lowpoly-walking-simulator/directx11_hellovr/DirectXTK/Audio/SoundCommon.cpp
2024-11-14 20:54:38 +09:00

788 lines
28 KiB
C++

//--------------------------------------------------------------------------------------
// File: SoundCommon.cpp
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkId=248929
//--------------------------------------------------------------------------------------
#pragma once
#include "pch.h"
#include "SoundCommon.h"
using namespace DirectX;
namespace
{
template <typename T> WORD ChannelsSpecifiedInMask(T x)
{
WORD bitCount = 0;
while (x) {++bitCount; x &= (x-1);}
return bitCount;
}
}
//======================================================================================
// Wave format utilities
//======================================================================================
bool DirectX::IsValid( _In_ const WAVEFORMATEX* wfx )
{
if ( !wfx )
return false;
if ( !wfx->nChannels )
{
DebugTrace( "ERROR: Wave format must have at least 1 channel\n" );
return false;
}
if ( wfx->nChannels > XAUDIO2_MAX_AUDIO_CHANNELS )
{
DebugTrace( "ERROR: Wave format must have less than %u channels (%u)\n", XAUDIO2_MAX_AUDIO_CHANNELS, wfx->nChannels );
return false;
}
if ( !wfx->nSamplesPerSec )
{
DebugTrace( "ERROR: Wave format cannot have a sample rate of 0\n" );
return false;
}
if ( ( wfx->nSamplesPerSec < XAUDIO2_MIN_SAMPLE_RATE )
|| ( wfx->nSamplesPerSec > XAUDIO2_MAX_SAMPLE_RATE ) )
{
DebugTrace( "ERROR: Wave format channel count must be in range %u..%u (%u)\n", XAUDIO2_MIN_SAMPLE_RATE, XAUDIO2_MAX_SAMPLE_RATE, wfx->nSamplesPerSec );
return false;
}
switch ( wfx->wFormatTag )
{
case WAVE_FORMAT_PCM:
switch( wfx->wBitsPerSample )
{
case 8:
case 16:
case 24:
case 32:
break;
default:
DebugTrace( "ERROR: Wave format integer PCM must have 8, 16, 24, or 32 bits per sample (%u)\n", wfx->wBitsPerSample );
return false;
}
if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) )
{
DebugTrace( "ERROR: Wave format integer PCM - nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n",
wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample );
return false;
}
if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) )
{
DebugTrace( "ERROR: Wave format integer PCM - nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n",
wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign );
return false;
}
return true;
case WAVE_FORMAT_IEEE_FLOAT:
if ( wfx->wBitsPerSample != 32 )
{
DebugTrace( "ERROR: Wave format float PCM must have 32-bits per sample (%u)\n", wfx->wBitsPerSample );
return false;
}
if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) )
{
DebugTrace( "ERROR: Wave format float PCM - nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n",
wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample );
return false;
}
if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) )
{
DebugTrace( "ERROR: Wave format float PCM - nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n",
wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign );
return false;
}
return true;
case WAVE_FORMAT_ADPCM:
if ( ( wfx->nChannels != 1 ) && ( wfx->nChannels != 2 ) )
{
DebugTrace( "ERROR: Wave format ADPCM must have 1 or 2 channels (%u)\n", wfx->nChannels );
return false;
}
if ( wfx->wBitsPerSample != 4 /*MSADPCM_BITS_PER_SAMPLE*/ )
{
DebugTrace( "ERROR: Wave format ADPCM must have 4 bits per sample (%u)\n", wfx->wBitsPerSample );
return false;
}
if ( wfx->cbSize != 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/ )
{
DebugTrace( "ERROR: Wave format ADPCM must have cbSize = 32 (%u)\n", wfx->cbSize );
return false;
}
else
{
auto wfadpcm = reinterpret_cast<const ADPCMWAVEFORMAT*>( wfx );
if ( wfadpcm->wNumCoef != 7 /*MSADPCM_NUM_COEFFICIENTS*/ )
{
DebugTrace( "ERROR: Wave format ADPCM must have 7 coefficients (%u)\n", wfadpcm->wNumCoef );
return false;
}
bool valid = true;
for ( int j = 0; j < 7 /*MSADPCM_NUM_COEFFICIENTS*/; ++j )
{
// Microsoft ADPCM standard encoding coefficients
static const short g_pAdpcmCoefficients1[] = {256, 512, 0, 192, 240, 460, 392};
static const short g_pAdpcmCoefficients2[] = { 0, -256, 0, 64, 0, -208, -232};
if ( wfadpcm->aCoef[j].iCoef1 != g_pAdpcmCoefficients1[j]
|| wfadpcm->aCoef[j].iCoef2 != g_pAdpcmCoefficients2[j] )
{
valid = false;
}
}
if ( !valid )
{
DebugTrace( "ERROR: Wave formt ADPCM found non-standard coefficients\n" );
return false;
}
if ( ( wfadpcm->wSamplesPerBlock < 4 /*MSADPCM_MIN_SAMPLES_PER_BLOCK*/ )
|| ( wfadpcm->wSamplesPerBlock > 64000 /*MSADPCM_MAX_SAMPLES_PER_BLOCK*/ ) )
{
DebugTrace( "ERROR: Wave format ADPCM wSamplesPerBlock must be 4..64000 (%u)\n", wfadpcm->wSamplesPerBlock );
return false;
}
if ( wfadpcm->wfx.nChannels == 1 && ( wfadpcm->wSamplesPerBlock % 2 ) )
{
DebugTrace( "ERROR: Wave format ADPCM mono files must have even wSamplesPerBlock\n" );
return false;
}
int nHeaderBytes = 7 /*MSADPCM_HEADER_LENGTH*/ * wfx->nChannels;
int nBitsPerFrame = 4 /*MSADPCM_BITS_PER_SAMPLE*/ * wfx->nChannels;
int nPcmFramesPerBlock = (wfx->nBlockAlign - nHeaderBytes) * 8 / nBitsPerFrame + 2;
if ( wfadpcm->wSamplesPerBlock != nPcmFramesPerBlock )
{
DebugTrace( "ERROR: Wave format ADPCM %u-channel with nBlockAlign = %u must have wSamplesPerBlock = %u (%u)\n",
wfx->nChannels, wfx->nBlockAlign, nPcmFramesPerBlock, wfadpcm->wSamplesPerBlock );
return false;
}
}
return true;
case WAVE_FORMAT_WMAUDIO2:
case WAVE_FORMAT_WMAUDIO3:
#if defined(_XBOX_ONE) || (_WIN32_WINNT < _WIN32_WINNT_WIN8) || (_WIN32_WINNT >= _WIN32_WINNT_WIN10)
if ( wfx->wBitsPerSample != 16 )
{
DebugTrace( "ERROR: Wave format xWMA only supports 16-bit data\n" );
return false;
}
if ( !wfx->nBlockAlign )
{
DebugTrace( "ERROR: Wave format xWMA must have a non-zero nBlockAlign\n" );
return false;
}
if ( !wfx->nAvgBytesPerSec )
{
DebugTrace( "ERROR: Wave format xWMA must have a non-zero nAvgBytesPerSec\n" );
return false;
}
return true;
#else
DebugTrace( "ERROR: Wave format xWMA not supported by this version of DirectXTK for Audio\n" );
return false;
#endif
case 0x166 /* WAVE_FORMAT_XMA2 */:
#if defined(_XBOX_ONE) && defined(_TITLE)
if ( wfx->nBlockAlign != wfx->nChannels * XMA_OUTPUT_SAMPLE_BYTES)
{
DebugTrace( "ERROR: Wave format XMA2 - nBlockAlign (%u) != nChannels(%u) * %u\n", wfx->nBlockAlign, wfx->nChannels, XMA_OUTPUT_SAMPLE_BYTES );
return false;
}
if ( wfx->wBitsPerSample != XMA_OUTPUT_SAMPLE_BITS )
{
DebugTrace( "ERROR: Wave format XMA2 wBitsPerSample (%u) should be %u\n", wfx->wBitsPerSample, XMA_OUTPUT_SAMPLE_BITS );
return false;
}
if ( wfx->cbSize != ( sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX) ) )
{
DebugTrace( "ERROR: Wave format XMA2 - cbSize must be %Iu (%u)\n", ( sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX) ), wfx->cbSize );
return false;
}
else
{
auto xmaFmt = reinterpret_cast<const XMA2WAVEFORMATEX*>( wfx );
if ( xmaFmt->EncoderVersion < 3 )
{
DebugTrace( "ERROR: Wave format XMA2 encoder version (%u) - 3 or higher is required\n", xmaFmt->EncoderVersion );
return false;
}
if ( !xmaFmt->BlockCount )
{
DebugTrace( "ERROR: Wave format XMA2 BlockCount must be non-zero\n" );
return false;
}
if ( !xmaFmt->BytesPerBlock || ( xmaFmt->BytesPerBlock > XMA_READBUFFER_MAX_BYTES ) )
{
DebugTrace( "ERROR: Wave format XMA2 BytesPerBlock (%u) is invalid\n", xmaFmt->BytesPerBlock );
return false;
}
if ( xmaFmt->ChannelMask )
{
auto channelBits = ChannelsSpecifiedInMask( xmaFmt->ChannelMask );
if ( channelBits != wfx->nChannels )
{
DebugTrace( "ERROR: Wave format XMA2 - nChannels=%u but ChannelMask (%08X) has %u bits set\n",
xmaFmt->ChannelMask, wfx->nChannels, channelBits );
return false;
}
}
if ( xmaFmt->NumStreams != ( ( wfx->nChannels + 1) / 2 ) )
{
DebugTrace( "ERROR: Wave format XMA2 - NumStreams (%u) != ( nChannels(%u) + 1 ) / 2\n", xmaFmt->NumStreams, wfx->nChannels );
return false;
}
if ( ( xmaFmt->PlayBegin + xmaFmt->PlayLength ) > xmaFmt->SamplesEncoded )
{
DebugTrace( "ERROR: Wave format XMA2 play region too large (%u + %u > %u)\n", xmaFmt->PlayBegin, xmaFmt->PlayLength, xmaFmt->SamplesEncoded );
return false;
}
if ( ( xmaFmt->LoopBegin + xmaFmt->LoopLength ) > xmaFmt->SamplesEncoded )
{
DebugTrace( "ERROR: Wave format XMA2 loop region too large (%u + %u > %u)\n", xmaFmt->LoopBegin, xmaFmt->LoopLength, xmaFmt->SamplesEncoded );
return false;
}
}
return true;
#else
DebugTrace( "ERROR: Wave format XMA2 not supported by this version of DirectXTK for Audio\n" );
return false;
#endif
case WAVE_FORMAT_EXTENSIBLE:
if ( wfx->cbSize < ( sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) ) )
{
DebugTrace( "ERROR: Wave format WAVE_FORMAT_EXTENSIBLE - cbSize must be %Iu (%u)\n", ( sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) ), wfx->cbSize );
return false;
}
else
{
static const GUID s_wfexBase = {0x00000000, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xAA, 0x00, 0x38, 0x9B, 0x71};
auto wfex = reinterpret_cast<const WAVEFORMATEXTENSIBLE*>( wfx );
if ( memcmp( reinterpret_cast<const BYTE*>(&wfex->SubFormat) + sizeof(DWORD),
reinterpret_cast<const BYTE*>(&s_wfexBase) + sizeof(DWORD), sizeof(GUID) - sizeof(DWORD) ) != 0 )
{
DebugTrace( "ERROR: Wave format WAVEFORMATEXTENSIBLE encountered with unknown GUID ({%8.8lX-%4.4X-%4.4X-%2.2X%2.2X-%2.2X%2.2X%2.2X%2.2X%2.2X%2.2X})\n",
wfex->SubFormat.Data1, wfex->SubFormat.Data2, wfex->SubFormat.Data3,
wfex->SubFormat.Data4[0], wfex->SubFormat.Data4[1], wfex->SubFormat.Data4[2], wfex->SubFormat.Data4[3],
wfex->SubFormat.Data4[4], wfex->SubFormat.Data4[5], wfex->SubFormat.Data4[6], wfex->SubFormat.Data4[7] );
return false;
}
switch( wfex->SubFormat.Data1 )
{
case WAVE_FORMAT_PCM:
switch( wfx->wBitsPerSample )
{
case 8:
case 16:
case 24:
case 32:
break;
default:
DebugTrace( "ERROR: Wave format integer PCM must have 8, 16, 24, or 32 bits per sample (%u)\n", wfx->wBitsPerSample );
return false;
}
switch( wfex->Samples.wValidBitsPerSample )
{
case 0:
case 8:
case 16:
case 20:
case 24:
case 32:
break;
default:
DebugTrace( "ERROR: Wave format integer PCM must have 8, 16, 20, 24, or 32 valid bits per sample (%u)\n", wfex->Samples.wValidBitsPerSample );
return false;
}
if ( wfex->Samples.wValidBitsPerSample
&& ( wfex->Samples.wValidBitsPerSample > wfx->wBitsPerSample ) )
{
DebugTrace( "ERROR: Wave format ingter PCM wValidBitsPerSample (%u) is greater than wBitsPerSample (%u)\n", wfex->Samples.wValidBitsPerSample, wfx->wBitsPerSample );
return false;
}
if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) )
{
DebugTrace( "ERROR: Wave format integer PCM - nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n",
wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample );
return false;
}
if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) )
{
DebugTrace( "ERROR: Wave format integer PCM - nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n",
wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign );
return false;
}
break;
case WAVE_FORMAT_IEEE_FLOAT:
if ( wfx->wBitsPerSample != 32 )
{
DebugTrace( "ERROR: Wave format float PCM must have 32-bits per sample (%u)\n", wfx->wBitsPerSample );
return false;
}
switch( wfex->Samples.wValidBitsPerSample )
{
case 0:
case 32:
break;
default:
DebugTrace( "ERROR: Wave format float PCM must have 32 valid bits per sample (%u)\n", wfex->Samples.wValidBitsPerSample );
return false;
}
if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) )
{
DebugTrace( "ERROR: Wave format float PCM - nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n",
wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample );
return false;
}
if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) )
{
DebugTrace( "ERROR: Wave format float PCM - nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n",
wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign );
return false;
}
break;
case WAVE_FORMAT_ADPCM:
DebugTrace( "ERROR: Wave format ADPCM is not supported as a WAVEFORMATEXTENSIBLE\n" );
return false;
case WAVE_FORMAT_WMAUDIO2:
case WAVE_FORMAT_WMAUDIO3:
#if defined(_XBOX_ONE) || (_WIN32_WINNT < _WIN32_WINNT_WIN8) || (_WIN32_WINNT >= _WIN32_WINNT_WIN10)
if ( wfx->wBitsPerSample != 16 )
{
DebugTrace( "ERROR: Wave format xWMA only supports 16-bit data\n" );
return false;
}
if ( !wfx->nBlockAlign )
{
DebugTrace( "ERROR: Wave format xWMA must have a non-zero nBlockAlign\n" );
return false;
}
if ( !wfx->nAvgBytesPerSec )
{
DebugTrace( "ERROR: Wave format xWMA must have a non-zero nAvgBytesPerSec\n" );
return false;
}
break;
#else
DebugTrace( "ERROR: Wave format xWMA not supported by this version of DirectXTK for Audio\n" );
return false;
#endif
case 0x166 /* WAVE_FORMAT_XMA2 */:
DebugTrace( "ERROR: Wave format XMA2 is not supported as a WAVEFORMATEXTENSIBLE\n" );
return false;
default:
DebugTrace( "ERROR: Unknown WAVEFORMATEXTENSIBLE format tag (%u)\n", wfex->SubFormat.Data1 );
return false;
}
if ( wfex->dwChannelMask )
{
auto channelBits = ChannelsSpecifiedInMask( wfex->dwChannelMask );
if ( channelBits != wfx->nChannels )
{
DebugTrace( "ERROR: WAVEFORMATEXTENSIBLE: nChannels=%u but ChannelMask has %u bits set\n",
wfx->nChannels, channelBits );
return false;
}
}
return true;
}
default:
DebugTrace( "ERROR: Unknown WAVEFORMATEX format tag (%u)\n", wfx->wFormatTag );
return false;
}
}
uint32_t DirectX::GetDefaultChannelMask( int channels )
{
switch( channels )
{
case 1: return SPEAKER_MONO;
case 2: return SPEAKER_STEREO;
case 3: return SPEAKER_2POINT1;
case 4: return SPEAKER_QUAD;
case 5: return SPEAKER_4POINT1;
case 6: return SPEAKER_5POINT1;
case 7: return SPEAKER_5POINT1 | SPEAKER_BACK_CENTER;
case 8: return SPEAKER_7POINT1;
default: return 0;
}
}
_Use_decl_annotations_
void DirectX::CreateIntegerPCM( WAVEFORMATEX* wfx, int sampleRate, int channels, int sampleBits )
{
int blockAlign = channels * sampleBits / 8;
wfx->wFormatTag = WAVE_FORMAT_PCM;
wfx->nChannels = static_cast<WORD>( channels );
wfx->nSamplesPerSec = static_cast<DWORD>( sampleRate );
wfx->nAvgBytesPerSec = static_cast<DWORD>( blockAlign * sampleRate );
wfx->nBlockAlign = static_cast<WORD>( blockAlign );
wfx->wBitsPerSample = static_cast<WORD>( sampleBits );
wfx->cbSize = 0;
assert( IsValid( wfx ) );
}
_Use_decl_annotations_
void DirectX::CreateFloatPCM( WAVEFORMATEX* wfx, int sampleRate, int channels )
{
int blockAlign = channels * 4;
wfx->wFormatTag = WAVE_FORMAT_IEEE_FLOAT;
wfx->nChannels = static_cast<WORD>( channels );
wfx->nSamplesPerSec = static_cast<DWORD>( sampleRate );
wfx->nAvgBytesPerSec = static_cast<DWORD>( blockAlign * sampleRate );
wfx->nBlockAlign = static_cast<WORD>( blockAlign );
wfx->wBitsPerSample = 32;
wfx->cbSize = 0;
assert( IsValid( wfx ) );
}
_Use_decl_annotations_
void DirectX::CreateADPCM( WAVEFORMATEX* wfx, size_t wfxSize, int sampleRate, int channels, int samplesPerBlock )
{
if ( wfxSize < ( sizeof(WAVEFORMATEX) + 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/ ) )
{
DebugTrace( "CreateADPCM needs at least %Iu bytes for the result\n", ( sizeof(WAVEFORMATEX) + 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/ ) );
throw std::invalid_argument( "ADPCMWAVEFORMAT" );
}
if ( !samplesPerBlock )
{
DebugTrace( "CreateADPCM needs a non-zero samples per block count\n" );
throw std::invalid_argument( "ADPCMWAVEFORMAT" );
}
int blockAlign = (7 /*MSADPCM_HEADER_LENGTH*/) * channels
+ (samplesPerBlock - 2) * (4 /* MSADPCM_BITS_PER_SAMPLE */) * channels / 8;
wfx->wFormatTag = WAVE_FORMAT_ADPCM;
wfx->nChannels = static_cast<WORD>( channels );
wfx->nSamplesPerSec = static_cast<DWORD>( sampleRate );
wfx->nAvgBytesPerSec = static_cast<DWORD>( blockAlign * sampleRate / samplesPerBlock );
wfx->nBlockAlign = static_cast<WORD>( blockAlign );
wfx->wBitsPerSample = 4 /* MSADPCM_BITS_PER_SAMPLE */;
wfx->cbSize = 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/;
auto adpcm = reinterpret_cast<ADPCMWAVEFORMAT*>( wfx );
adpcm->wSamplesPerBlock = static_cast<WORD>( samplesPerBlock );
adpcm->wNumCoef = 7 /* MSADPCM_NUM_COEFFICIENTS */;
static ADPCMCOEFSET aCoef[7] = { { 256, 0}, {512, -256}, {0,0}, {192,64}, {240,0}, {460, -208}, {392,-232} };
memcpy( &adpcm->aCoef, aCoef, sizeof(aCoef) );
assert( IsValid( wfx ) );
}
#if defined(_XBOX_ONE) || (_WIN32_WINNT < _WIN32_WINNT_WIN8) || (_WIN32_WINNT >= _WIN32_WINNT_WIN10)
_Use_decl_annotations_
void DirectX::CreateXWMA( WAVEFORMATEX* wfx, int sampleRate, int channels, int blockAlign, int avgBytes, bool wma3 )
{
wfx->wFormatTag = (wma3) ? WAVE_FORMAT_WMAUDIO3 : WAVE_FORMAT_WMAUDIO2;
wfx->nChannels = static_cast<WORD>( channels );
wfx->nSamplesPerSec = static_cast<DWORD>( sampleRate );
wfx->nAvgBytesPerSec = static_cast<DWORD>( avgBytes );
wfx->nBlockAlign = static_cast<WORD>( blockAlign );
wfx->wBitsPerSample = 16;
wfx->cbSize = 0;
assert( IsValid( wfx ) );
}
#endif
#if defined(_XBOX_ONE) && defined(_TITLE)
_Use_decl_annotations_
void DirectX::CreateXMA2( WAVEFORMATEX* wfx, size_t wfxSize, int sampleRate, int channels, int bytesPerBlock, int blockCount, int samplesEncoded )
{
if ( wfxSize < sizeof(XMA2WAVEFORMATEX) )
{
DebugTrace( "XMA2 needs at least %Iu bytes for the result\n", sizeof(XMA2WAVEFORMATEX) );
throw std::invalid_argument( "XMA2WAVEFORMATEX" );
}
if ( !bytesPerBlock || ( bytesPerBlock > XMA_READBUFFER_MAX_BYTES ) )
{
DebugTrace( "XMA2 needs a valid bytes per block\n" );
throw std::invalid_argument( "XMA2WAVEFORMATEX" );
}
int blockAlign = (channels * ( 16 /*XMA_OUTPUT_SAMPLE_BITS*/ ) / 8);
wfx->wFormatTag = WAVE_FORMAT_XMA2;
wfx->nChannels = static_cast<WORD>( channels );
wfx->nSamplesPerSec = static_cast<WORD>( sampleRate );
wfx->nAvgBytesPerSec = static_cast<DWORD>( blockAlign * sampleRate );
wfx->nBlockAlign = static_cast<WORD>( blockAlign );
wfx->wBitsPerSample = 16 /* XMA_OUTPUT_SAMPLE_BITS */;
wfx->cbSize = sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX);
auto xmaFmt = reinterpret_cast<XMA2WAVEFORMATEX*>(wfx);
xmaFmt->NumStreams = static_cast<WORD>( (channels + 1) / 2 );
xmaFmt->ChannelMask = GetDefaultChannelMask( channels );
xmaFmt->SamplesEncoded = static_cast<DWORD>( samplesEncoded );
xmaFmt->BytesPerBlock = bytesPerBlock;
xmaFmt->PlayBegin = xmaFmt->PlayLength =
xmaFmt->LoopBegin = xmaFmt->LoopLength = xmaFmt->LoopCount = 0;
xmaFmt->EncoderVersion = 4 /* XMAENCODER_VERSION_XMA2 */;
xmaFmt->BlockCount = static_cast<WORD>( blockCount );
assert( IsValid( wfx ) );
}
#endif // _XBOX_ONE && _TITLE
_Use_decl_annotations_
bool DirectX::ComputePan( float pan, int channels, float* matrix )
{
memset( matrix, 0, sizeof(float) * 16 );
if (channels == 1)
{
// Mono panning
float left = ( pan >= 0 ) ? ( 1.f - pan ) : 1.f;
left = std::min<float>( 1.f, left );
left = std::max<float>( -1.f, left );
float right = ( pan <= 0 ) ? ( - pan - 1.f ) : 1.f;
right = std::min<float>( 1.f, right );
right = std::max<float>( -1.f, right );
matrix[0] = left;
matrix[1] = right;
}
else if (channels == 2)
{
// Stereo panning
if ( -1.f <= pan && pan <= 0.f )
{
matrix[0] = .5f * pan + 1.f; // .5 when pan is -1, 1 when pan is 0
matrix[1] = .5f * -pan; // .5 when pan is -1, 0 when pan is 0
matrix[2] = 0.f; // 0 when pan is -1, 0 when pan is 0
matrix[3] = pan + 1.f; // 0 when pan is -1, 1 when pan is 0
}
else
{
matrix[0] = -pan + 1.f; // 1 when pan is 0, 0 when pan is 1
matrix[1] = 0.f; // 0 when pan is 0, 0 when pan is 1
matrix[2] = .5f * pan; // 0 when pan is 0, .5f when pan is 1
matrix[3] = .5f * -pan + 1.f; // 1 when pan is 0. .5f when pan is 1
}
}
else
{
if ( pan != 0.f )
{
DebugTrace( "WARNING: Only supports panning on mono or stereo source data, ignored\n" );
}
return false;
}
return true;
}
//======================================================================================
// SoundEffectInstanceBase
//======================================================================================
void SoundEffectInstanceBase::SetPan( float pan )
{
assert( pan >= -1.f && pan <= 1.f );
mPan = pan;
if ( !voice )
return;
float matrix[16];
if ( ComputePan( pan, mDSPSettings.SrcChannelCount, matrix ) )
{
HRESULT hr = voice->SetOutputMatrix( nullptr, mDSPSettings.SrcChannelCount, mDSPSettings.DstChannelCount, matrix );
ThrowIfFailed( hr );
}
}
void SoundEffectInstanceBase::Apply3D( const AudioListener& listener, const AudioEmitter& emitter, bool rhcoords )
{
if ( !voice )
return;
if ( !( mFlags & SoundEffectInstance_Use3D ) )
{
DebugTrace( "ERROR: Apply3D called for an instance created without SoundEffectInstance_Use3D set\n" );
throw std::exception( "Apply3D" );
}
DWORD dwCalcFlags = X3DAUDIO_CALCULATE_MATRIX | X3DAUDIO_CALCULATE_DOPPLER | X3DAUDIO_CALCULATE_LPF_DIRECT;
if ( mFlags & SoundEffectInstance_UseRedirectLFE )
{
// On devices with an LFE channel, allow the mono source data to be routed to the LFE destination channel.
dwCalcFlags |= X3DAUDIO_CALCULATE_REDIRECT_TO_LFE;
}
auto reverb = mReverbVoice;
if ( reverb )
{
dwCalcFlags |= X3DAUDIO_CALCULATE_LPF_REVERB | X3DAUDIO_CALCULATE_REVERB;
}
float matrix[ XAUDIO2_MAX_AUDIO_CHANNELS * 8 ];
assert( mDSPSettings.SrcChannelCount <= XAUDIO2_MAX_AUDIO_CHANNELS );
assert( mDSPSettings.DstChannelCount <= 8 );
mDSPSettings.pMatrixCoefficients = matrix;
assert( engine != 0 );
if (rhcoords)
{
X3DAUDIO_EMITTER lhEmitter;
memcpy(&lhEmitter, &emitter, sizeof(X3DAUDIO_EMITTER));
lhEmitter.OrientFront.z = -emitter.OrientFront.z;
lhEmitter.OrientTop.z = -emitter.OrientTop.z;
lhEmitter.Position.z = -emitter.Position.z;
lhEmitter.Velocity.z = -emitter.Velocity.z;
X3DAUDIO_LISTENER lhListener;
memcpy(&lhListener, &listener, sizeof(X3DAUDIO_LISTENER));
lhListener.OrientFront.z = -listener.OrientFront.z;
lhListener.OrientTop.z = -listener.OrientTop.z;
lhListener.Position.z = -listener.Position.z;
lhListener.Velocity.z = -listener.Velocity.z;
X3DAudioCalculate( engine->Get3DHandle(), &lhListener, &lhEmitter, dwCalcFlags, &mDSPSettings );
}
else
{
X3DAudioCalculate( engine->Get3DHandle(), &listener, &emitter, dwCalcFlags, &mDSPSettings );
}
mDSPSettings.pMatrixCoefficients = nullptr;
voice->SetFrequencyRatio( mFreqRatio * mDSPSettings.DopplerFactor );
auto direct = mDirectVoice;
assert( direct != 0 );
voice->SetOutputMatrix( direct, mDSPSettings.SrcChannelCount, mDSPSettings.DstChannelCount, matrix );
if ( reverb )
{
voice->SetOutputMatrix( reverb, 1, 1, &mDSPSettings.ReverbLevel );
}
if ( mFlags & SoundEffectInstance_ReverbUseFilters )
{
XAUDIO2_FILTER_PARAMETERS filterDirect = { LowPassFilter, 2.0f * sinf(X3DAUDIO_PI/6.0f * mDSPSettings.LPFDirectCoefficient), 1.0f };
// see XAudio2CutoffFrequencyToRadians() in XAudio2.h for more information on the formula used here
voice->SetOutputFilterParameters( direct, &filterDirect );
if ( reverb )
{
XAUDIO2_FILTER_PARAMETERS filterReverb = { LowPassFilter, 2.0f * sinf(X3DAUDIO_PI/6.0f * mDSPSettings.LPFReverbCoefficient), 1.0f };
// see XAudio2CutoffFrequencyToRadians() in XAudio2.h for more information on the formula used here
voice->SetOutputFilterParameters( reverb, &filterReverb );
}
}
}