//-------------------------------------------------------------------------------------- // File: xwbtool.cpp // // Simple command-line tool for building wave banks from 1 or more .WAV files. This // generates binary wave banks compliant with XACT 3's Wave Bank .XWB format. The // .WAV files are not format converted or compressed. // // For a more full-featured builder, see XACT 3 and the XACTBLD tool in the legacy // DirectX SDK (June 2010) release. // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF // ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A // PARTICULAR PURPOSE. // // Copyright (c) Microsoft Corporation. All rights reserved. // // http://go.microsoft.com/fwlink/?LinkId=248929 //-------------------------------------------------------------------------------------- #define WIN32_LEAN_AND_MEAN #include #include #include #include #include #include #include #include "WAVFileReader.h" ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #ifndef WAVE_FORMAT_XMA2 #define WAVE_FORMAT_XMA2 0x166 #pragma pack(push,1) typedef struct XMA2WAVEFORMATEX { WAVEFORMATEX wfx; // Meaning of the WAVEFORMATEX fields here: // wFormatTag; // Audio format type; always WAVE_FORMAT_XMA2 // nChannels; // Channel count of the decoded audio // nSamplesPerSec; // Sample rate of the decoded audio // nAvgBytesPerSec; // Used internally by the XMA encoder // nBlockAlign; // Decoded sample size; channels * wBitsPerSample / 8 // wBitsPerSample; // Bits per decoded mono sample; always 16 for XMA // cbSize; // Size in bytes of the rest of this structure (34) WORD NumStreams; // Number of audio streams (1 or 2 channels each) DWORD ChannelMask; // Spatial positions of the channels in this file, // stored as SPEAKER_xxx values (see audiodefs.h) DWORD SamplesEncoded; // Total number of PCM samples per channel the file decodes to DWORD BytesPerBlock; // XMA block size (but the last one may be shorter) DWORD PlayBegin; // First valid sample in the decoded audio DWORD PlayLength; // Length of the valid part of the decoded audio DWORD LoopBegin; // Beginning of the loop region in decoded sample terms DWORD LoopLength; // Length of the loop region in decoded sample terms BYTE LoopCount; // Number of loop repetitions; 255 = infinite BYTE EncoderVersion; // Version of XMA encoder that generated the file WORD BlockCount; // XMA blocks in file (and entries in its seek table) } XMA2WAVEFORMATEX; #pragma pack(pop) #endif static_assert(sizeof(XMA2WAVEFORMATEX) == 52, "Mismatch of XMA2 type" ); ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// namespace { struct handle_closer { void operator()(HANDLE h) { if (h) CloseHandle(h); } }; typedef public std::unique_ptr ScopedHandle; inline HANDLE safe_handle( HANDLE h ) { return (h == INVALID_HANDLE_VALUE) ? 0 : h; } #define BLOCKALIGNPAD(a, b) \ ((((a) + ((b) - 1)) / (b)) * (b)) #define XACT_CONTENT_VERSION 46 // DirectX SDK (June 2010) #pragma pack(push, 1) static const size_t DVD_SECTOR_SIZE = 2048; static const size_t DVD_BLOCK_SIZE = DVD_SECTOR_SIZE * 16; static const size_t ALIGNMENT_MIN = 4; static const size_t ALIGNMENT_DVD = DVD_SECTOR_SIZE; static const size_t MAX_DATA_SEGMENT_SIZE = 0xFFFFFFFF; static const size_t MAX_COMPACT_DATA_SEGMENT_SIZE = 0x001FFFFF; static const size_t ENTRYNAME_LENGTH = 64; struct REGION { uint32_t dwOffset; // Region offset, in bytes. uint32_t dwLength; // Region length, in bytes. }; struct SAMPLEREGION { uint32_t dwStartSample; // Start sample for the region. uint32_t dwTotalSamples; // Region length in samples. }; struct HEADER { static const uint32_t SIGNATURE = 'DNBW'; static const uint32_t VERSION = 44; enum SEGIDX { SEGIDX_BANKDATA = 0, // Bank data SEGIDX_ENTRYMETADATA, // Entry meta-data SEGIDX_SEEKTABLES, // Storage for seek tables for the encoded waves. SEGIDX_ENTRYNAMES, // Entry friendly names SEGIDX_ENTRYWAVEDATA, // Entry wave data SEGIDX_COUNT }; uint32_t dwSignature; // File signature uint32_t dwVersion; // Version of the tool that created the file uint32_t dwHeaderVersion; // Version of the file format REGION Segments[SEGIDX_COUNT]; // Segment lookup table }; #pragma warning( disable : 4201 4203 ) union MINIWAVEFORMAT { static const uint32_t TAG_PCM = 0x0; static const uint32_t TAG_XMA = 0x1; static const uint32_t TAG_ADPCM = 0x2; static const uint32_t TAG_WMA = 0x3; static const uint32_t BITDEPTH_8 = 0x0; // PCM only static const uint32_t BITDEPTH_16 = 0x1; // PCM only static const size_t ADPCM_BLOCKALIGN_CONVERSION_OFFSET = 22; struct { uint32_t wFormatTag : 2; // Format tag uint32_t nChannels : 3; // Channel count (1 - 6) uint32_t nSamplesPerSec : 18; // Sampling rate uint32_t wBlockAlign : 8; // Block alignment. For WMA, lower 6 bits block alignment index, upper 2 bits bytes-per-second index. uint32_t wBitsPerSample : 1; // Bits per sample (8 vs. 16, PCM only); WMAudio2/WMAudio3 (for WMA) }; uint32_t dwValue; WORD BitsPerSample() const { if (wFormatTag == TAG_XMA) return 16; // XMA_OUTPUT_SAMPLE_BITS == 16 if (wFormatTag == TAG_WMA) return 16; if (wFormatTag == TAG_ADPCM) return 4; // MSADPCM_BITS_PER_SAMPLE == 4 // wFormatTag must be TAG_PCM (2 bits can only represent 4 different values) return (wBitsPerSample == BITDEPTH_16) ? 16 : 8; } }; struct ENTRY { static const uint32_t FLAGS_READAHEAD = 0x00000001; // Enable stream read-ahead static const uint32_t FLAGS_LOOPCACHE = 0x00000002; // One or more looping sounds use this wave static const uint32_t FLAGS_REMOVELOOPTAIL = 0x00000004;// Remove data after the end of the loop region static const uint32_t FLAGS_IGNORELOOP = 0x00000008; // Used internally when the loop region can't be used static const uint32_t FLAGS_MASK = 0x00000008; union { struct { // Entry flags uint32_t dwFlags : 4; // Duration of the wave, in units of one sample. // For instance, a ten second long wave sampled // at 48KHz would have a duration of 480,000. // This value is not affected by the number of // channels, the number of bits per sample, or the // compression format of the wave. uint32_t Duration : 28; }; uint32_t dwFlagsAndDuration; }; MINIWAVEFORMAT Format; // Entry format. REGION PlayRegion; // Region within the wave data segment that contains this entry. SAMPLEREGION LoopRegion; // Region within the wave data (in samples) that should loop. }; struct ENTRYCOMPACT { uint32_t dwOffset : 21; // Data offset, in multiplies of the bank alignment uint32_t dwLengthDeviation : 11; // Data length deviation, in bytes }; struct BANKDATA { static const size_t BANKNAME_LENGTH = 64; static const uint32_t TYPE_BUFFER = 0x00000000; static const uint32_t TYPE_STREAMING = 0x00000001; static const uint32_t TYPE_MASK = 0x00000001; static const uint32_t FLAGS_ENTRYNAMES = 0x00010000; static const uint32_t FLAGS_COMPACT = 0x00020000; static const uint32_t FLAGS_SYNC_DISABLED = 0x00040000; static const uint32_t FLAGS_SEEKTABLES = 0x00080000; static const uint32_t FLAGS_MASK = 0x000F0000; uint32_t dwFlags; // Bank flags uint32_t dwEntryCount; // Number of entries in the bank char szBankName[BANKNAME_LENGTH]; // Bank friendly name uint32_t dwEntryMetaDataElementSize; // Size of each entry meta-data element, in bytes uint32_t dwEntryNameElementSize; // Size of each entry name element, in bytes uint32_t dwAlignment; // Entry alignment, in bytes MINIWAVEFORMAT CompactFormat; // Format data for compact bank FILETIME BuildTime; // Build timestamp }; #pragma pack(pop) }; static_assert( sizeof(REGION)==8, "Mismatch with xact3wb.h" ); static_assert( sizeof(SAMPLEREGION)==8, "Mismatch with xact3wb.h" ); static_assert( sizeof(HEADER)==52, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRY)==24, "Mismatch with xact3wb.h" ); static_assert( sizeof(MINIWAVEFORMAT)==4, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRY)==24, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRYCOMPACT)==4, "Mismatch with xact3wb.h" ); static_assert( sizeof(BANKDATA)==96, "Mismatch with xact3wb.h" ); template WORD ChannelsSpecifiedInMask(T x) { WORD bitCount = 0; while (x) {++bitCount; x &= (x-1);} return bitCount; } WORD AdpcmBlockSizeFromPcmFrames(WORD nPcmFrames, WORD nChannels) { // The full calculation is as follows: // UINT uHeaderBytes = MSADPCM_HEADER_LENGTH * nChannels; // UINT uBitsPerSample = MSADPCM_BITS_PER_SAMPLE * nChannels; // UINT uBlockAlign = uHeaderBytes + (nPcmFrames - 2) * uBitsPerSample / 8; // return WORD(uBlockAlign); assert(nChannels == 1 || nChannels == 2); if (nPcmFrames) { if (nChannels == 1) { assert(nPcmFrames % 2 == 0); // Mono data needs even nPcmFrames return WORD(nPcmFrames / 2 + 6); } else { return WORD(nPcmFrames + 12); } } else { return 0; } } DWORD EncodeWMABlockAlign(DWORD dwBlockAlign, DWORD dwAvgBytesPerSec) { static const uint32_t aWMABlockAlign[] = { 929, 1487, 1280, 2230, 8917, 8192, 4459, 5945, 2304, 1536, 1485, 1008, 2731, 4096, 6827, 5462, 1280 }; static const uint32_t aWMAAvgBytesPerSec[] = { 12000, 24000, 4000, 6000, 8000, 20000, 2500 }; auto bit = std::find( std::begin(aWMABlockAlign), std::end(aWMABlockAlign), dwBlockAlign ); if ( bit == std::end(aWMABlockAlign) ) return DWORD(-1); DWORD blockAlignIndex = DWORD(bit - std::begin(aWMABlockAlign)); auto ait = std::find( std::begin(aWMAAvgBytesPerSec), std::end(aWMAAvgBytesPerSec), dwAvgBytesPerSec ); if ( ait == std::end(aWMAAvgBytesPerSec) ) return DWORD(-1); DWORD bytesPerSecIndex = DWORD(ait - std::begin(aWMAAvgBytesPerSec)); return DWORD( blockAlignIndex | (bytesPerSecIndex << 5) ); } bool ConvertToMiniFormat( const WAVEFORMATEX* wfx, bool hasSeek, MINIWAVEFORMAT& miniFmt ) { if ( !wfx ) return false; if ( !wfx->nChannels ) { wprintf( L"ERROR: Wave bank entry must have at least 1 channel\n" ); return false; } if ( wfx->nChannels > 7 ) { wprintf( L"ERROR: Wave banks only support up to 7 channels\n" ); return false; } if ( !wfx->nSamplesPerSec ) { wprintf( L"ERROR: Wave banks entry sample rate must be non-zero\n" ); return false; } if ( wfx->nSamplesPerSec > 262143 ) { wprintf( L"ERROR: Wave banks only support sample rates up to 2^18 (262143)\n" ); return false; } miniFmt.dwValue = 0; miniFmt.nSamplesPerSec = wfx->nSamplesPerSec; miniFmt.nChannels = wfx->nChannels; switch ( wfx->wFormatTag ) { case WAVE_FORMAT_PCM: if ( ( wfx->wBitsPerSample != 8 ) && ( wfx->wBitsPerSample != 16 ) ) { wprintf( L"ERROR: Wave banks only support 8-bit or 16-bit integer PCM data\n"); return false; } if ( wfx->nBlockAlign > 255 ) { wprintf( L"ERROR: Wave banks only support block alignments up to 255 (%u)\n", wfx->nBlockAlign ); return false; } if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) ) { wprintf( L"ERROR: nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n", wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample ); return false; } if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) ) { wprintf( L"ERROR: nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n", wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign ); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_PCM; miniFmt.wBitsPerSample = (wfx->wBitsPerSample == 16) ? MINIWAVEFORMAT::BITDEPTH_16 : MINIWAVEFORMAT::BITDEPTH_8; miniFmt.wBlockAlign = wfx->nBlockAlign; return true; case WAVE_FORMAT_IEEE_FLOAT: wprintf( L"ERROR: Wave banks do not support IEEE float PCM data\n" ); return false; case WAVE_FORMAT_ADPCM: if ( ( wfx->nChannels != 1 ) && ( wfx->nChannels != 2 ) ) { wprintf( L"ERROR: ADPCM wave format must have 1 or 2 channels (not %u)\n", wfx->nChannels ); return false; } if ( wfx->wBitsPerSample != 4 /*MSADPCM_BITS_PER_SAMPLE*/ ) { wprintf( L"ERROR: ADPCM wave format must have 4 bits per sample (not %u)\n", wfx->wBitsPerSample ); return false; } if ( wfx->cbSize != 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/ ) { wprintf( L"ERROR: ADPCM wave format must have cbSize = 32 (not %u)\n", wfx->cbSize ); return false; } else { auto wfadpcm = reinterpret_cast( wfx ); if ( wfadpcm->wNumCoef != 7 /*MSADPCM_NUM_COEFFICIENTS*/ ) { wprintf( L"ERROR: ADPCM wave format must have 7 coefficients (not %u)\n", wfadpcm->wNumCoef ); return false; } bool valid = true; for ( int j = 0; j < 7 /*MSADPCM_NUM_COEFFICIENTS*/; ++j ) { // Microsoft ADPCM standard encoding coefficients static const short g_pAdpcmCoefficients1[] = {256, 512, 0, 192, 240, 460, 392}; static const short g_pAdpcmCoefficients2[] = { 0, -256, 0, 64, 0, -208, -232}; if ( wfadpcm->aCoef[j].iCoef1 != g_pAdpcmCoefficients1[j] || wfadpcm->aCoef[j].iCoef2 != g_pAdpcmCoefficients2[j] ) { valid = false; } } if ( !valid ) { wprintf( L"ERROR: Non-standard coefficients for ADPCM found\n" ); return false; } if ( ( wfadpcm->wSamplesPerBlock < 4 /*MSADPCM_MIN_SAMPLES_PER_BLOCK*/ ) || ( wfadpcm->wSamplesPerBlock > 64000 /*MSADPCM_MAX_SAMPLES_PER_BLOCK*/ ) ) { wprintf( L"ERROR: ADPCM wave format wSamplesPerBlock must be 4..64000\n" ); return false; } if ( wfadpcm->wfx.nChannels == 1 && ( wfadpcm->wSamplesPerBlock % 2 ) ) { wprintf( L"ERROR: ADPCM wave format mono files must have even wSamplesPerBlock\n" ); return false; } unsigned int nHeaderBytes = 7 /*MSADPCM_HEADER_LENGTH*/ * wfx->nChannels; unsigned int nBitsPerFrame = 4 /*MSADPCM_BITS_PER_SAMPLE*/ * wfx->nChannels; unsigned int nPcmFramesPerBlock = (wfx->nBlockAlign - nHeaderBytes) * 8 / nBitsPerFrame + 2; if ( wfadpcm->wSamplesPerBlock != nPcmFramesPerBlock ) { wprintf( L"ERROR: ADPCM %u-channel format with nBlockAlign = %u must have wSamplesPerBlock = %u (not %u)\n", wfx->nChannels, wfx->nBlockAlign, nPcmFramesPerBlock, wfadpcm->wSamplesPerBlock ); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_ADPCM; miniFmt.wBitsPerSample = 0; miniFmt.wBlockAlign = AdpcmBlockSizeFromPcmFrames(wfadpcm->wSamplesPerBlock, 1 ) - MINIWAVEFORMAT::ADPCM_BLOCKALIGN_CONVERSION_OFFSET; } return true; case WAVE_FORMAT_WMAUDIO2: case WAVE_FORMAT_WMAUDIO3: if ( !hasSeek ) { wprintf( L"ERROR: xWMA requires seek tables ('dpds' chunk)\n"); return false; } if ( wfx->wBitsPerSample != 16 ) { wprintf( L"ERROR: Wave banks only support 16-bit xWMA data\n"); return false; } if ( !wfx->nBlockAlign ) { wprintf( L"ERROR: Wave bank xWMA must have a non-zero nBlockAlign\n" ); return false; } if ( !wfx->nAvgBytesPerSec ) { wprintf( L"ERROR: Wave bank xWMA must have a non-zero nAvgBytesPerSec\n" ); return false; } if ( wfx->cbSize != 0 ) { wprintf( L"ERROR: Unexpected data found in xWMA header\n"); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_WMA; miniFmt.wBitsPerSample = ( wfx->wFormatTag == WAVE_FORMAT_WMAUDIO3 ) ? MINIWAVEFORMAT::BITDEPTH_16 : MINIWAVEFORMAT::BITDEPTH_8; { DWORD blockAlign = EncodeWMABlockAlign( wfx->nBlockAlign, wfx->nAvgBytesPerSec ); if ( blockAlign == DWORD(-1) ) { wprintf( L"ERROR: Failed encoding nBlockAlign and nAvgBytesPerSec for xWMA\n"); return false; } miniFmt.wBlockAlign = blockAlign; } return true; case WAVE_FORMAT_XMA2: if ( !hasSeek ) { wprintf( L"ERROR: XMA2 requires seek tables ('seek' chunk)\n"); return false; } if ( wfx->nBlockAlign != wfx->nChannels * 2 /*XMA_OUTPUT_SAMPLE_BYTES*/) { wprintf( L"ERROR: XMA2 nBlockAlign (%u) != nChannels(%u) * 2\n", wfx->nBlockAlign, wfx->nChannels ); return false; } if ( wfx->wBitsPerSample != 16 /*XMA_OUTPUT_SAMPLE_BITS*/ ) { wprintf( L"ERROR: XMA2 wBitsPerSample (%u) should be 16\n", wfx->wBitsPerSample ); return false; } if ( wfx->cbSize != ( sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX) ) ) { wprintf( L"ERROR: XMA2 cbSize must be %Iu (%u)", ( sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX) ), wfx->cbSize ); return false; } else { auto xmaFmt = reinterpret_cast( wfx ); if ( xmaFmt->EncoderVersion < 3 ) { wprintf( L"ERROR: XMA2 encoder version (%u) - 3 or higher is required", xmaFmt->EncoderVersion ); return false; } if ( !xmaFmt->BlockCount ) { wprintf( L"ERROR: XMA2 BlockCount must be non-zero\n" ); return false; } if ( !xmaFmt->BytesPerBlock || ( xmaFmt->BytesPerBlock > 8386560 /*XMA_READBUFFER_MAX_BYTES*/ ) ) { wprintf( L"ERROR: XMA2 BytesPerBlock (%u) is invalid\n", xmaFmt->BytesPerBlock ); return false; } if ( xmaFmt->ChannelMask ) { auto channelBits = ChannelsSpecifiedInMask( xmaFmt->ChannelMask ); if ( channelBits != wfx->nChannels ) { wprintf( L"ERROR: XMA2 nChannels=%u but ChannelMask (%08X) has %u bits set\n", xmaFmt->ChannelMask, wfx->nChannels, channelBits ); return false; } } if ( xmaFmt->NumStreams != ( ( wfx->nChannels + 1) / 2 ) ) { wprintf( L"ERROR: XMA2 NumStreams (%u) != ( nChannels(%u) + 1 ) / 2\n", xmaFmt->NumStreams, wfx->nChannels ); return false; } if ( !xmaFmt->SamplesEncoded ) { wprintf( L"ERROR: XMA2 SamplesEncoded must be non-zero\n" ); return false; } if ( ( xmaFmt->PlayBegin + xmaFmt->PlayLength ) > xmaFmt->SamplesEncoded ) { wprintf( L"ERROR: XMA2 play region too large (%u + %u > %u)", xmaFmt->PlayBegin, xmaFmt->PlayLength, xmaFmt->SamplesEncoded ); return false; } if ( ( xmaFmt->LoopBegin + xmaFmt->LoopLength ) > xmaFmt->SamplesEncoded ) { wprintf( L"ERROR: XMA2 loop region too large (%u + %u > %u)", xmaFmt->LoopBegin, xmaFmt->LoopLength, xmaFmt->SamplesEncoded ); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_XMA; miniFmt.wBlockAlign = 2 * wfx->nChannels; miniFmt.wBitsPerSample = MINIWAVEFORMAT::BITDEPTH_16; } return true; case WAVE_FORMAT_EXTENSIBLE: if ( wfx->cbSize < ( sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) ) ) { wprintf( L"ERROR: WAVEFORMATEXTENSIBLE cbSize must be at least %Iu (%u)", ( sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) ), wfx->cbSize ); return false; } else { static const GUID s_wfexBase = {0x00000000, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xAA, 0x00, 0x38, 0x9B, 0x71}; auto wfex = reinterpret_cast( wfx ); if ( memcmp( reinterpret_cast(&wfex->SubFormat) + sizeof(DWORD), reinterpret_cast(&s_wfexBase) + sizeof(DWORD), sizeof(GUID) - sizeof(DWORD) ) != 0 ) { wprintf( L"ERROR: WAVEFORMATEXTENSIBLE encountered with unknown GUID ({%8.8lX-%4.4X-%4.4X-%2.2X%2.2X-%2.2X%2.2X%2.2X%2.2X%2.2X%2.2X})\n", wfex->SubFormat.Data1, wfex->SubFormat.Data2, wfex->SubFormat.Data3, wfex->SubFormat.Data4[0], wfex->SubFormat.Data4[1], wfex->SubFormat.Data4[2], wfex->SubFormat.Data4[3], wfex->SubFormat.Data4[4], wfex->SubFormat.Data4[5], wfex->SubFormat.Data4[6], wfex->SubFormat.Data4[7] ); return false; } switch( wfex->SubFormat.Data1 ) { case WAVE_FORMAT_PCM: if ( ( wfx->wBitsPerSample != 8 ) && ( wfx->wBitsPerSample != 16 ) ) { wprintf( L"ERROR: Wave banks only support 8-bit or 16-bit integer PCM data (%u)\n", wfx->wBitsPerSample ); return false; } if ( !wfex->Samples.wValidBitsPerSample ) { wprintf( L"WARNING: Integer PCM WAVEFORMATEXTENSIBLE format should not have wValidBitsPerSample = 0\n" ); } else if ( ( ( wfex->Samples.wValidBitsPerSample != 8 ) && ( wfex->Samples.wValidBitsPerSample != 16 ) ) || ( wfex->Samples.wValidBitsPerSample > wfx->wBitsPerSample ) ) { wprintf( L"ERROR: Unexpected wValidBitsPerSample value (%u)\n", wfex->Samples.wValidBitsPerSample ); return false; } if ( wfx->nBlockAlign > 255 ) { wprintf( L"ERROR: Wave banks only support block alignments up to 255 (%u)\n", wfx->nBlockAlign ); return false; } if ( wfx->nBlockAlign != ( wfx->nChannels * wfx->wBitsPerSample / 8 ) ) { wprintf( L"ERROR: nBlockAlign (%u) != nChannels (%u) * wBitsPerSample (%u) / 8\n", wfx->nBlockAlign, wfx->nChannels, wfx->wBitsPerSample ); return false; } if ( wfx->nAvgBytesPerSec != ( wfx->nSamplesPerSec * wfx->nBlockAlign ) ) { wprintf( L"ERROR: nAvgBytesPerSec (%lu) != nSamplesPerSec (%lu) * nBlockAlign (%u)\n", wfx->nAvgBytesPerSec, wfx->nSamplesPerSec, wfx->nBlockAlign ); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_PCM; miniFmt.wBitsPerSample = (wfex->Samples.wValidBitsPerSample == 16) ? MINIWAVEFORMAT::BITDEPTH_16 : MINIWAVEFORMAT::BITDEPTH_8; miniFmt.wBlockAlign = wfx->nBlockAlign; break; case WAVE_FORMAT_IEEE_FLOAT: wprintf( L"ERROR: Wave banks do not support float PCM data\n" ); return false; case WAVE_FORMAT_ADPCM: wprintf( L"ERROR: ADPCM is not supported as a WAVEFORMATEXTENSIBLE\n" ); return false; case WAVE_FORMAT_WMAUDIO2: case WAVE_FORMAT_WMAUDIO3: if ( !hasSeek ) { wprintf( L"ERROR: xWMA requires seek tables (dpds chunk)\n"); return false; } if ( wfx->wBitsPerSample != 16 ) { wprintf( L"ERROR: Wave banks only support 16-bit xWMA data\n"); return false; } if ( !wfx->nBlockAlign ) { wprintf( L"ERROR: Wvae bank xWMA must have a non-zero nBlockAlign\n" ); return false; } if ( !wfx->nAvgBytesPerSec ) { wprintf( L"ERROR: Wave bank xWMA must have a non-zero nAvgBytesPerSec\n" ); return false; } miniFmt.wFormatTag = MINIWAVEFORMAT::TAG_WMA; miniFmt.wBitsPerSample = ( wfx->wFormatTag == WAVE_FORMAT_WMAUDIO3 ) ? MINIWAVEFORMAT::BITDEPTH_16 : MINIWAVEFORMAT::BITDEPTH_8; { DWORD blockAlign = EncodeWMABlockAlign( wfx->nBlockAlign, wfx->nAvgBytesPerSec ); if ( blockAlign == DWORD(-1) ) { wprintf( L"ERROR: Failed encoding nBlockAlign and nAvgBytesPerSec for xWMA\n"); return false; } miniFmt.wBlockAlign = blockAlign; } break; case WAVE_FORMAT_XMA2: wprintf( L"ERROR: XMA2 is not supported as a WAVEFORMATEXTENSIBLE\n" ); return false; default: wprintf( L"ERROR: Unknown WAVEFORMATEXTENSIBLE format tag\n" ); return false; } if ( wfex->dwChannelMask ) { auto channelBits = ChannelsSpecifiedInMask( wfex->dwChannelMask ); if ( channelBits != wfx->nChannels ) { wprintf( L"ERROR: WAVEFORMATEXTENSIBLE: nChannels=%u but ChannelMask has %u bits set\n", wfx->nChannels, channelBits ); return false; } else { wprintf( L"WARNING: WAVEFORMATEXTENSIBLE ChannelMask is ignored in wave banks\n" ); } } return true; } default: return false; } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// enum OPTIONS // Note: dwOptions below assumes 32 or less options. { OPT_STREAMING = 1, OPT_OUTPUTFILE, OPT_OUTPUTHEADER, OPT_NOOVERWRITE, OPT_COMPACT, OPT_NOCOMPACT, OPT_FRIENDLY_NAMES, OPT_NOLOGO, OPT_MAX }; static_assert( OPT_MAX <= 32, "dwOptions is a DWORD bitfield" ); struct SConversion { WCHAR szSrc [MAX_PATH]; SConversion *pNext; }; struct SValue { LPCWSTR pName; DWORD dwValue; }; struct WaveFile { DirectX::WAVData data; uint8_t* waveData; const SConversion* conv; MINIWAVEFORMAT miniFmt; WaveFile() : waveData(nullptr), conv(nullptr) { memset( &data, 0, sizeof(data) ); } }; void FileNameToIdentifier( _Inout_updates_all_(count) WCHAR* str, size_t count ) { size_t j = 0; for( WCHAR* c = str; j < count && *c != 0; ++c, ++j ) { WCHAR t = towupper( *c ); if ( !iswdigit(t) && !iswalpha(t) ) t = '_'; *c = t; } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// SValue g_pOptions[] = { { L"s", OPT_STREAMING }, { L"o", OPT_OUTPUTFILE }, { L"h", OPT_OUTPUTHEADER }, { L"n", OPT_NOOVERWRITE }, { L"c", OPT_COMPACT }, { L"nc", OPT_NOCOMPACT }, { L"f", OPT_FRIENDLY_NAMES }, { L"nologo", OPT_NOLOGO }, { nullptr, 0 } }; ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #pragma prefast(disable : 26018, "Only used with static internal arrays") DWORD LookupByName(const WCHAR *pName, const SValue *pArray) { while(pArray->pName) { if(!_wcsicmp(pName, pArray->pName)) return pArray->dwValue; pArray++; } return 0; } const WCHAR* LookupByValue(DWORD pValue, const SValue *pArray) { while(pArray->pName) { if(pValue == pArray->dwValue) return pArray->pName; pArray++; } return L""; } void PrintLogo() { wprintf( L"Microsoft (R) XACT-style Wave Bank Tool \n"); wprintf( L"Copyright (C) Microsoft Corp. All rights reserved.\n"); wprintf( L"\n"); } void PrintUsage() { PrintLogo(); wprintf( L"Usage: xwbtool \n"); wprintf( L"\n"); wprintf( L" -s creates a streaming wave bank,\n" ); wprintf( L" otherwise an in-memory bank is created\n" ); wprintf( L" -o output filename\n" ); wprintf( L" -h output C/C++ header\n" ); wprintf( L" -n do not overwrite output\n" ); wprintf( L" -c force creation of compact wavebank\n" ); wprintf( L" -nc force creation of non-compact wavebank\n" ); wprintf( L" -f include entry friendly names\n" ); wprintf( L" -nologo suppress copyright message\n" ); } const char* GetFormatTagName( WORD wFormatTag ) { switch( wFormatTag ) { case WAVE_FORMAT_PCM: return "PCM"; case WAVE_FORMAT_ADPCM: return "MS ADPCM"; case WAVE_FORMAT_EXTENSIBLE: return "EXTENSIBLE"; case WAVE_FORMAT_IEEE_FLOAT: return "IEEE float"; case WAVE_FORMAT_MPEGLAYER3: return "ISO/MPEG Layer3"; case WAVE_FORMAT_DOLBY_AC3_SPDIF: return "Dolby Audio Codec 3 over S/PDIF"; case WAVE_FORMAT_WMAUDIO2: return "Windows Media Audio"; case WAVE_FORMAT_WMAUDIO3: return "Windows Media Audio Pro"; case WAVE_FORMAT_WMASPDIF: return "Windows Media Audio over S/PDIF"; case 0x165: /*WAVE_FORMAT_XMA*/ return "Xbox XMA"; case 0x166: /*WAVE_FORMAT_XMA2*/ return "Xbox XMA2"; default: return "*UNKNOWN*"; } } const char *ChannelDesc( DWORD dwChannelMask ) { switch( dwChannelMask ) { case 0x00000004 /*SPEAKER_MONO*/: return "Mono"; // case 0x00000003 /* SPEAKER_STEREO */: return "Stereo"; case 0x0000000B /* SPEAKER_2POINT1 */: return "2.1"; case 0x00000107 /* SPEAKER_SURROUND */: return "Surround"; case 0x00000033 /* SPEAKER_QUAD */: return "Quad"; case 0x0000003B /* SPEAKER_4POINT1 */: return "4.1"; case 0x0000003F /* SPEAKER_5POINT1 */: return "5.1"; case 0x000000FF /* SPEAKER_7POINT1 */: return "7.1"; case 0x0000060F /* SPEAKER_5POINT1_SURROUND */: return "Surround5.1"; case 0x0000063F /* SPEAKER_7POINT1_SURROUND */: return "Surround7.1"; default: return "Custom"; } } void PrintInfo( const WaveFile& wave ) { wprintf( L" (%hs %u channels, %u-bit, %u Hz)", GetFormatTagName( wave.data.wfx->wFormatTag ), wave.data.wfx->nChannels, wave.data.wfx->wBitsPerSample, wave.data.wfx->nSamplesPerSec ); } bool FileExists( const WCHAR* pszFilename ) { FILE *f = nullptr; if ( !_wfopen_s( &f, pszFilename, L"rb" ) ) { if ( f ) fclose(f); return true; } return false; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// //-------------------------------------------------------------------------------------- // Entry-point //-------------------------------------------------------------------------------------- #pragma prefast(disable : 28198, "Command-line tool, frees all memory on exit") int __cdecl wmain(_In_ int argc, _In_z_count_(argc) wchar_t* argv[]) { // Parameters and defaults INT nReturn = 0; WCHAR szOutputFile[MAX_PATH] = { 0 }; WCHAR szHeaderFile[MAX_PATH] = { 0 }; ScopedHandle hFile; // Process command line DWORD dwOptions = 0; SConversion *pConversion = nullptr; SConversion **ppConversion = &pConversion; for(int iArg = 1; iArg < argc; iArg++) { PWSTR pArg = argv[iArg]; if(('-' == pArg[0]) || ('/' == pArg[0])) { pArg++; PWSTR pValue; for(pValue = pArg; *pValue && (':' != *pValue); pValue++); if(*pValue) *pValue++ = 0; DWORD dwOption = LookupByName(pArg, g_pOptions); if(!dwOption || (dwOptions & (1 << dwOption))) { PrintUsage(); return 1; } dwOptions |= 1 << dwOption; if( (OPT_NOLOGO != dwOption) && (OPT_STREAMING != dwOption) && (OPT_NOOVERWRITE != dwOption) && (OPT_COMPACT != dwOption) && (OPT_NOCOMPACT != dwOption) && (OPT_FRIENDLY_NAMES != dwOption) ) { if(!*pValue) { if((iArg + 1 >= argc)) { PrintUsage(); return 1; } iArg++; pValue = argv[iArg]; } } switch(dwOption) { case OPT_OUTPUTFILE: wcscpy_s(szOutputFile, MAX_PATH, pValue); break; case OPT_OUTPUTHEADER: wcscpy_s(szHeaderFile, MAX_PATH, pValue); break; case OPT_COMPACT: if ( dwOptions & (1 << OPT_NOCOMPACT) ) { wprintf( L"-c and -nc are mutually exclusive options\n" ); return 1; } break; case OPT_NOCOMPACT: if ( dwOptions & (1 << OPT_COMPACT) ) { wprintf( L"-c and -nc are mutually exclusive options\n" ); return 1; } break; } } else { SConversion *pConv = new SConversion; if ( !pConv ) return 1; wcscpy_s(pConv->szSrc, MAX_PATH, pArg); pConv->pNext = nullptr; *ppConversion = pConv; ppConversion = &pConv->pNext; } } if( !pConversion ) { wprintf( L"ERROR: Need at least 1 wave file to build wave bank\n\n"); PrintUsage(); return 0; } if(~dwOptions & (1 << OPT_NOLOGO)) PrintLogo(); // Gather wave files std::unique_ptr entries; std::unique_ptr entryNames; std::vector waves; MINIWAVEFORMAT compactFormat={0}; bool xma = false; for( SConversion *pConv = pConversion; pConv; pConv = pConv->pNext ) { WCHAR ext[_MAX_EXT]; WCHAR fname[_MAX_FNAME]; _wsplitpath_s( pConv->szSrc, nullptr, 0, nullptr, 0, fname, _MAX_FNAME, ext, _MAX_EXT ); // Load source image if( pConv != pConversion ) wprintf( L"\n"); else if ( !*szOutputFile ) { if ( _wcsicmp( ext, L".xwb" ) == 0 ) { wprintf( L"ERROR: Need to specify output file via -o\n"); return 1; } _wmakepath_s( szOutputFile, nullptr, nullptr, fname, L".xwb" ); } wprintf( L"reading %ls", pConv->szSrc ); fflush(stdout); WaveFile wave; wave.conv = pConv; std::unique_ptr waveData; HRESULT hr = DirectX::LoadWAVAudioFromFileEx( pConv->szSrc, waveData, wave.data ); if ( FAILED(hr) ) { wprintf( L"\nERROR: Failed to load file (%08X)\n", hr); goto LError; } wave.waveData = waveData.release(); PrintInfo( wave ); if ( wave.data.wfx->wFormatTag == WAVE_FORMAT_XMA2 ) xma = true; waves.emplace_back( wave ); } wprintf( L"\n" ); DWORD dwAlignment = ALIGNMENT_MIN; if (dwOptions & (1 << OPT_STREAMING)) dwAlignment = ALIGNMENT_DVD; else if ( xma ) dwAlignment = 2048; // Convert wave format to miniformat, failing if any won't map // Check to see if we can use the compact wave bank format bool compact = (dwOptions & (1 << OPT_NOCOMPACT)) ? false : true; int reason = 0; uint64_t waveOffset = 0; for( auto it = waves.begin(); it != waves.end(); ++it ) { if ( !ConvertToMiniFormat( it->data.wfx, it->data.seek != 0, it->miniFmt ) ) { wprintf( L"Failed encoding %ls\n", it->conv->szSrc ); goto LError; } if ( it == waves.begin() ) { memcpy( &compactFormat, &it->miniFmt, sizeof(MINIWAVEFORMAT) ); } else if ( memcmp( &compactFormat, &it->miniFmt, sizeof(MINIWAVEFORMAT) ) != 0 ) { compact = false; reason |= 0x1; } if ( it->data.loopLength > 0 ) { compact = false; reason |= 0x2; } DWORD alignedSize = BLOCKALIGNPAD( it->data.audioBytes, dwAlignment ); waveOffset += alignedSize; } if ( waveOffset > 0xFFFFFFFF ) { wprintf( L"ERROR: Audio wave data is too large to encode into wavebank (offset %I64u)", waveOffset ); goto LError; } else if ( waveOffset > ( MAX_COMPACT_DATA_SEGMENT_SIZE * dwAlignment ) ) { compact = false; reason |= 0x4; } if ( ( dwOptions & (1 << OPT_COMPACT) ) && !compact ) { wprintf( L"ERROR: Cannot create compact wave bank:\n" ); if ( reason & 0x1 ) { wprintf( L"- Mismatched formats. All formats must be identical for a compact wavebank.\n" ); } if ( reason & 0x2 ) { wprintf( L"- Found loop points. Compact wavebanks do not support loop points.\n"); } if ( reason & 0x4 ) { wprintf( L"- Audio wave data is too large to encode in compact wavebank (%I64u > %I64u).\n", waveOffset, uint64_t(MAX_COMPACT_DATA_SEGMENT_SIZE * dwAlignment) ); } goto LError; } // Build entry metadata (and assign wave offset within data segment) // Build entry friendly names if requested entries.reset( new uint8_t[ ( compact ? sizeof(ENTRYCOMPACT) : sizeof(ENTRY) ) * waves.size() ] ); if ( dwOptions & (1 << OPT_FRIENDLY_NAMES) ) { entryNames.reset( new char[ waves.size() * ENTRYNAME_LENGTH ] ); memset( entryNames.get(), 0, sizeof(char) * waves.size() * ENTRYNAME_LENGTH ); } waveOffset = 0; size_t count = 0; size_t seekEntries = 0; for( auto it = waves.begin(); it != waves.end(); ++it, ++count ) { DWORD alignedSize = BLOCKALIGNPAD( it->data.audioBytes, dwAlignment ); auto wfx = it->data.wfx; uint64_t duration = 0; switch( it->miniFmt.wFormatTag ) { case MINIWAVEFORMAT::TAG_XMA: if ( it->data.seekCount > 0 ) seekEntries += it->data.seekCount + 1; duration = reinterpret_cast( wfx )->SamplesEncoded; break; case MINIWAVEFORMAT::TAG_ADPCM: { auto adpcmFmt = reinterpret_cast( wfx ); duration = ( it->data.audioBytes / wfx->nBlockAlign ) * adpcmFmt->wSamplesPerBlock; int partial = it->data.audioBytes % wfx->nBlockAlign; if ( partial ) { if ( partial >= ( 7 * wfx->nChannels ) ) duration += ( partial * 2 / wfx->nChannels - 12 ); } } break; case MINIWAVEFORMAT::TAG_WMA: if ( it->data.seekCount > 0 ) { seekEntries += it->data.seekCount + 1; duration = it->data.seek[ it->data.seekCount - 1 ] / uint32_t( 2 * wfx->nChannels ); } break; default: // MINIWAVEFORMAT::TAG_PCM duration = ( uint64_t( it->data.audioBytes) * 8 ) / uint64_t( wfx->wBitsPerSample * wfx->nChannels ); break; } if ( compact ) { auto entry = reinterpret_cast( entries.get() + count * sizeof(ENTRYCOMPACT) ); memset( entry, 0, sizeof(ENTRYCOMPACT) ); assert ( waveOffset <= ( MAX_COMPACT_DATA_SEGMENT_SIZE * dwAlignment ) ); entry->dwOffset = uint32_t( waveOffset / dwAlignment ); assert( dwAlignment <= 2048 ); entry->dwLengthDeviation = alignedSize - it->data.audioBytes; } else { auto entry = reinterpret_cast( entries.get() + count * sizeof(ENTRY) ); memset( entry, 0, sizeof(ENTRY) ); if ( duration > 268435455 ) { wprintf( L"ERROR: Duration of audio too long to encode into wavebank (%I64u > 2^28))\n", duration ); goto LError; } entry->Duration = uint32_t( duration ); memcpy( &entry->Format, &it->miniFmt, sizeof(MINIWAVEFORMAT) ); entry->PlayRegion.dwOffset = uint32_t( waveOffset ); entry->PlayRegion.dwLength = it->data.audioBytes; if ( it->data.loopLength > 0 ) { entry->LoopRegion.dwStartSample = it->data.loopStart; entry->LoopRegion.dwTotalSamples = it->data.loopLength; } } if ( dwOptions & (1 << OPT_FRIENDLY_NAMES ) ) { WCHAR wEntryName[_MAX_FNAME]; _wsplitpath_s( it->conv->szSrc, nullptr, 0, nullptr, 0, wEntryName, _MAX_FNAME, nullptr, 0 ); int result = WideCharToMultiByte( CP_ACP, WC_NO_BEST_FIT_CHARS, wEntryName, -1, &entryNames[ count * ENTRYNAME_LENGTH], ENTRYNAME_LENGTH, nullptr, FALSE ); if ( result <= 0 ) { memset( &entryNames[ count * ENTRYNAME_LENGTH], 0, ENTRYNAME_LENGTH ); } } waveOffset += alignedSize; } assert( count > 0 && count == waves.size() ); // Create wave bank assert( *szOutputFile != 0 ); wprintf( L"writing %ls%ls wavebank %ls\n", (compact) ? L"compact " : L"", (dwOptions & (1 << OPT_STREAMING)) ? L"streaming" : L"in-memory", szOutputFile ); fflush(stdout); if (dwOptions & (1 << OPT_NOOVERWRITE)) { if ( FileExists( szOutputFile ) ) { wprintf( L"ERROR: Output file %ls already exists!\n", szOutputFile ); goto LError; } if ( *szHeaderFile ) { if ( FileExists( szHeaderFile ) ) { wprintf( L"ERROR: Output header file %ls already exists!\n", szHeaderFile ); goto LError; } } } hFile.reset( safe_handle( CreateFileW( szOutputFile, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr ) ) ); if ( !hFile ) { wprintf( L"ERROR: Failed opening output file %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } // Setup wave bank header HEADER header; memset( &header, 0, sizeof(header) ); header.dwSignature = HEADER::SIGNATURE; header.dwHeaderVersion = HEADER::VERSION; header.dwVersion = XACT_CONTENT_VERSION; DWORD segmentOffset = sizeof(HEADER); // Write bank metadata assert( ( segmentOffset % 4 ) == 0 ); BANKDATA data; memset( &data, 0, sizeof(data) ); data.dwEntryCount = uint32_t( waves.size() ); data.dwAlignment = dwAlignment; GetSystemTimeAsFileTime( &data.BuildTime ); data.dwFlags = ( dwOptions & (1 << OPT_STREAMING) ) ? BANKDATA::TYPE_STREAMING : BANKDATA::TYPE_BUFFER; data.dwFlags |= BANKDATA::FLAGS_SEEKTABLES; if ( dwOptions & (1 << OPT_FRIENDLY_NAMES) ) { data.dwFlags |= BANKDATA::FLAGS_ENTRYNAMES; data.dwEntryNameElementSize = ENTRYNAME_LENGTH; } if ( compact ) { data.dwFlags |= BANKDATA::FLAGS_COMPACT; data.dwEntryMetaDataElementSize = sizeof(ENTRYCOMPACT); memcpy( &data.CompactFormat, &compactFormat, sizeof(MINIWAVEFORMAT) ); } else { data.dwEntryMetaDataElementSize = sizeof(ENTRY); } { WCHAR wBankName[ _MAX_FNAME ]; _wsplitpath_s( szOutputFile, nullptr, 0, nullptr, 0, wBankName, _MAX_FNAME, nullptr, 0 ); int result = WideCharToMultiByte( CP_ACP, WC_NO_BEST_FIT_CHARS, wBankName, -1, data.szBankName, BANKDATA::BANKNAME_LENGTH, nullptr, FALSE ); if ( result <= 0 ) { memset( data.szBankName, 0, BANKDATA::BANKNAME_LENGTH ); } } if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed writing bank data to %ls, SFP %u\n", szOutputFile, GetLastError() ); goto LError; } if ( !WriteFile( hFile.get(), &data, sizeof(data), nullptr, nullptr ) ) { wprintf( L"ERROR: Failed writing bank data to %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } header.Segments[ HEADER::SEGIDX_BANKDATA ].dwOffset = segmentOffset; header.Segments[ HEADER::SEGIDX_BANKDATA ].dwLength = sizeof(BANKDATA); segmentOffset += sizeof(BANKDATA); // Write entry metadata assert( ( segmentOffset % 4 ) == 0 ); if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed writing entry metadata to %ls, SFP %u\n", szOutputFile, GetLastError() ); goto LError; } uint32_t entryBytes = uint32_t( waves.size() * data.dwEntryMetaDataElementSize ); if ( !WriteFile( hFile.get(), entries.get(), entryBytes, nullptr, nullptr ) ) { wprintf( L"ERROR: Failed writing entry metadata to %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } header.Segments[ HEADER::SEGIDX_ENTRYMETADATA ].dwOffset = segmentOffset; header.Segments[ HEADER::SEGIDX_ENTRYMETADATA ].dwLength = entryBytes; segmentOffset += entryBytes; // Write seek tables assert( ( segmentOffset % 4 ) == 0 ); header.Segments[ HEADER::SEGIDX_SEEKTABLES ].dwOffset = segmentOffset; if ( seekEntries > 0 ) { seekEntries += waves.size(); // Room for an offset per entry std::unique_ptr seekTables( new uint32_t[ seekEntries ] ); if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed writing seek tables to %ls, SFP %u\n", szOutputFile, GetLastError() ); goto LError; } uint32_t seekoffset = 0; uint32_t index = 0; for( auto it = waves.begin(); it != waves.end(); ++it, ++index ) { if ( it->miniFmt.wFormatTag == MINIWAVEFORMAT::TAG_WMA ) { seekTables[ index ] = seekoffset * sizeof(uint32_t); uint32_t baseoffset = uint32_t( waves.size() + seekoffset ); seekTables[ baseoffset ] = it->data.seekCount; for( uint32_t j = 0; j < it->data.seekCount; ++j ) { seekTables[ baseoffset + j + 1 ] = it->data.seek[ j ]; } seekoffset += it->data.seekCount + 1; } else if ( it->miniFmt.wFormatTag == MINIWAVEFORMAT::TAG_XMA ) { seekTables[ index ] = seekoffset * sizeof(uint32_t); uint32_t baseoffset = uint32_t( waves.size() + seekoffset ); seekTables[ baseoffset ] = it->data.seekCount; for( uint32_t j = 0; j < it->data.seekCount; ++j ) { seekTables[ baseoffset + j + 1 ] = _byteswap_ulong( it->data.seek[ j ] ); } seekoffset += it->data.seekCount + 1; } else { seekTables[ index ] = uint32_t( -1 ); } } uint32_t seekLen = uint32_t( sizeof(uint32_t) * seekEntries ); if ( !WriteFile( hFile.get(), seekTables.get(), seekLen, nullptr, nullptr ) ) { wprintf( L"ERROR: Failed writing seek tables to %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } segmentOffset += seekLen; header.Segments[ HEADER::SEGIDX_SEEKTABLES ].dwLength = seekLen; } else { header.Segments[ HEADER::SEGIDX_SEEKTABLES ].dwLength = 0; } // Write entry names if ( dwOptions & (1 << OPT_FRIENDLY_NAMES ) ) { assert( ( segmentOffset % 4 ) == 0 ); if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed writing friendly entry names to %ls, SFP %u\n", szOutputFile, GetLastError() ); goto LError; } uint32_t entryNamesBytes = uint32_t( count * data.dwEntryNameElementSize ); if ( !WriteFile( hFile.get(), entryNames.get(), entryNamesBytes, nullptr, nullptr ) ) { wprintf( L"ERROR: Failed writing friendly entry names to %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } header.Segments[ HEADER::SEGIDX_ENTRYNAMES ].dwOffset = segmentOffset; header.Segments[ HEADER::SEGIDX_ENTRYNAMES ].dwLength = entryNamesBytes; segmentOffset += entryNamesBytes; } // Write wave data segmentOffset = BLOCKALIGNPAD( segmentOffset, dwAlignment ); header.Segments[ HEADER::SEGIDX_ENTRYWAVEDATA ].dwOffset = segmentOffset; header.Segments[ HEADER::SEGIDX_ENTRYWAVEDATA ].dwLength = uint32_t( waveOffset ); for( auto it = waves.begin(); it != waves.end(); ++it ) { if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed writing audio data to %ls, SFP %u\n", szOutputFile, GetLastError() ); goto LError; } if ( !WriteFile( hFile.get(), it->data.startAudio, it->data.audioBytes, nullptr, nullptr ) ) { wprintf( L"ERROR: Failed writing audio data to %ls, %u\n", szOutputFile, GetLastError() ); goto LError; } DWORD alignedSize = BLOCKALIGNPAD( it->data.audioBytes, dwAlignment ); if ( ( uint64_t(segmentOffset) + alignedSize ) > 0xFFFFFFFF ) { wprintf( L"ERROR: Data exceeds maximum size for wavebank\n" ); goto LError; } segmentOffset += alignedSize; } assert( segmentOffset == ( header.Segments[ HEADER::SEGIDX_ENTRYWAVEDATA ].dwOffset + waveOffset ) ); // Commit wave bank if ( SetFilePointer( hFile.get(), segmentOffset, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed committing output file %ls, EOF %u\n", szOutputFile, GetLastError() ); goto LError; } if ( !SetEndOfFile( hFile.get() ) ) { wprintf( L"ERROR: Failed committing output file %ls, EOF %u\n", szOutputFile, GetLastError() ); goto LError; } if ( SetFilePointer( hFile.get(), 0, 0, FILE_BEGIN ) == INVALID_SET_FILE_POINTER ) { wprintf( L"ERROR: Failed committing output file %ls, HDR %u\n", szOutputFile, GetLastError() ); goto LError; } if ( !WriteFile( hFile.get(), &header, sizeof(header), nullptr, nullptr ) ) { wprintf( L"ERROR: Failed committing output file %ls, HDR %u\n", szOutputFile, GetLastError() ); goto LError; } // Write C header if requested if ( *szHeaderFile ) { wprintf( L"writing C header %ls\n", szHeaderFile ); fflush(stdout); FILE* file = nullptr; if ( !_wfopen_s( &file, szHeaderFile, L"wt" ) ) { WCHAR wBankName[ _MAX_FNAME ]; _wsplitpath_s( szOutputFile, nullptr, 0, nullptr, 0, wBankName, _MAX_FNAME, nullptr, 0 ); FileNameToIdentifier( wBankName, _MAX_FNAME ); fprintf_s( file, "#pragma once\n\nenum XACT_WAVEBANK_%ls\n{\n", wBankName ); size_t index = 0; for( auto it = waves.begin(); it != waves.end(); ++it, ++index ) { WCHAR wEntryName[_MAX_FNAME]; _wsplitpath_s( it->conv->szSrc, nullptr, 0, nullptr, 0, wEntryName, _MAX_FNAME, nullptr, 0 ); FileNameToIdentifier( wEntryName, _MAX_FNAME ); fprintf_s( file, " XACT_WAVEBANK_%ls_%ls = %Iu,\n", wBankName, wEntryName, index ); } fprintf_s( file, "};\n\n#define XACT_WAVEBANK_%ls_ENTRY_COUNT %Iu\n", wBankName, count ); fclose(file); } else { wprintf( L"ERROR: Failed writing wave bank C header %ls\n", szHeaderFile ); goto LError; } } nReturn = 0; goto LDone; LError: nReturn = 1; LDone: for( auto it = waves.begin(); it != waves.end(); ++it ) { if ( it->waveData ) { delete [] it->waveData; it->waveData = nullptr; } } while(pConversion) { auto pConv = pConversion; pConversion = pConversion->pNext; delete pConv; } return nReturn; }