//-------------------------------------------------------------------------------------- // File: WaveBankReader.cpp // // Functions for loading audio data from Wave Banks // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF // ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A // PARTICULAR PURPOSE. // // Copyright (c) Microsoft Corporation. All rights reserved. // // http://go.microsoft.com/fwlink/?LinkId=248929 //------------------------------------------------------------------------------------- #include "pch.h" #include "WaveBankReader.h" #include "Audio.h" #include "PlatformHelpers.h" #if defined(_XBOX_ONE) && defined(_TITLE) #include #endif namespace { //-------------------------------------------------------------------------------------- #pragma pack(push, 1) static const size_t DVD_SECTOR_SIZE = 2048; static const size_t DVD_BLOCK_SIZE = DVD_SECTOR_SIZE * 16; static const size_t ALIGNMENT_MIN = 4; static const size_t ALIGNMENT_DVD = DVD_SECTOR_SIZE; static const size_t MAX_DATA_SEGMENT_SIZE = 0xFFFFFFFF; static const size_t MAX_COMPACT_DATA_SEGMENT_SIZE = 0x001FFFFF; struct REGION { uint32_t dwOffset; // Region offset, in bytes. uint32_t dwLength; // Region length, in bytes. void BigEndian() { dwOffset = _byteswap_ulong( dwOffset ); dwLength = _byteswap_ulong( dwLength ); } }; struct SAMPLEREGION { uint32_t dwStartSample; // Start sample for the region. uint32_t dwTotalSamples; // Region length in samples. void BigEndian() { dwStartSample = _byteswap_ulong( dwStartSample ); dwTotalSamples = _byteswap_ulong( dwTotalSamples ); } }; struct HEADER { static const uint32_t SIGNATURE = 'DNBW'; static const uint32_t BE_SIGNATURE = 'WBND'; static const uint32_t VERSION = 44; enum SEGIDX { SEGIDX_BANKDATA = 0, // Bank data SEGIDX_ENTRYMETADATA, // Entry meta-data SEGIDX_SEEKTABLES, // Storage for seek tables for the encoded waves. SEGIDX_ENTRYNAMES, // Entry friendly names SEGIDX_ENTRYWAVEDATA, // Entry wave data SEGIDX_COUNT }; uint32_t dwSignature; // File signature uint32_t dwVersion; // Version of the tool that created the file uint32_t dwHeaderVersion; // Version of the file format REGION Segments[SEGIDX_COUNT]; // Segment lookup table void BigEndian() { // Leave dwSignature alone as indicator of BE vs. LE dwVersion = _byteswap_ulong( dwVersion ); dwHeaderVersion =_byteswap_ulong( dwHeaderVersion ); for( size_t j = 0; j < SEGIDX_COUNT; ++j ) { Segments[j].BigEndian(); } } }; #pragma warning( disable : 4201 4203 ) union MINIWAVEFORMAT { static const uint32_t TAG_PCM = 0x0; static const uint32_t TAG_XMA = 0x1; static const uint32_t TAG_ADPCM = 0x2; static const uint32_t TAG_WMA = 0x3; static const uint32_t BITDEPTH_8 = 0x0; // PCM only static const uint32_t BITDEPTH_16 = 0x1; // PCM only static const size_t ADPCM_BLOCKALIGN_CONVERSION_OFFSET = 22; struct { uint32_t wFormatTag : 2; // Format tag uint32_t nChannels : 3; // Channel count (1 - 6) uint32_t nSamplesPerSec : 18; // Sampling rate uint32_t wBlockAlign : 8; // Block alignment. For WMA, lower 6 bits block alignment index, upper 2 bits bytes-per-second index. uint32_t wBitsPerSample : 1; // Bits per sample (8 vs. 16, PCM only); WMAudio2/WMAudio3 (for WMA) }; uint32_t dwValue; void BigEndian() { dwValue = _byteswap_ulong( dwValue ); } WORD BitsPerSample() const { if (wFormatTag == TAG_XMA) return 16; // XMA_OUTPUT_SAMPLE_BITS == 16 if (wFormatTag == TAG_WMA) return 16; if (wFormatTag == TAG_ADPCM) return 4; // MSADPCM_BITS_PER_SAMPLE == 4 // wFormatTag must be TAG_PCM (2 bits can only represent 4 different values) return (wBitsPerSample == BITDEPTH_16) ? 16 : 8; } DWORD BlockAlign() const { switch (wFormatTag) { case TAG_PCM: return wBlockAlign; case TAG_XMA: return (nChannels * 16 / 8); // XMA_OUTPUT_SAMPLE_BITS = 16 case TAG_ADPCM: return (wBlockAlign + ADPCM_BLOCKALIGN_CONVERSION_OFFSET) * nChannels; case TAG_WMA: { static const uint32_t aWMABlockAlign[] = { 929, 1487, 1280, 2230, 8917, 8192, 4459, 5945, 2304, 1536, 1485, 1008, 2731, 4096, 6827, 5462, 1280 }; uint32_t dwBlockAlignIndex = wBlockAlign & 0x1F; if ( dwBlockAlignIndex < _countof(aWMABlockAlign) ) return aWMABlockAlign[dwBlockAlignIndex]; } break; } return 0; } DWORD AvgBytesPerSec() const { switch (wFormatTag) { case TAG_PCM: return nSamplesPerSec * wBlockAlign; case TAG_XMA: return nSamplesPerSec * BlockAlign(); case TAG_ADPCM: { uint32_t blockAlign = BlockAlign(); uint32_t samplesPerAdpcmBlock = AdpcmSamplesPerBlock(); return blockAlign * nSamplesPerSec / samplesPerAdpcmBlock; } break; case TAG_WMA: { static const uint32_t aWMAAvgBytesPerSec[] = { 12000, 24000, 4000, 6000, 8000, 20000, 2500 }; // bitrate = entry * 8 uint32_t dwBytesPerSecIndex = wBlockAlign >> 5; if ( dwBytesPerSecIndex < _countof(aWMAAvgBytesPerSec) ) return aWMAAvgBytesPerSec[dwBytesPerSecIndex]; } break; } return 0; } DWORD AdpcmSamplesPerBlock() const { uint32_t nBlockAlign = (wBlockAlign + ADPCM_BLOCKALIGN_CONVERSION_OFFSET) * nChannels; return nBlockAlign * 2 / (uint32_t)nChannels - 12; } void AdpcmFillCoefficientTable(ADPCMWAVEFORMAT *fmt) const { // These are fixed since we are always using MS ADPCM fmt->wNumCoef = 7 /* MSADPCM_NUM_COEFFICIENTS */; static ADPCMCOEFSET aCoef[7] = { { 256, 0}, {512, -256}, {0,0}, {192,64}, {240,0}, {460, -208}, {392,-232} }; memcpy( &fmt->aCoef, aCoef, sizeof(aCoef) ); } }; struct BANKDATA { static const size_t BANKNAME_LENGTH = 64; static const uint32_t TYPE_BUFFER = 0x00000000; static const uint32_t TYPE_STREAMING = 0x00000001; static const uint32_t TYPE_MASK = 0x00000001; static const uint32_t FLAGS_ENTRYNAMES = 0x00010000; static const uint32_t FLAGS_COMPACT = 0x00020000; static const uint32_t FLAGS_SYNC_DISABLED = 0x00040000; static const uint32_t FLAGS_SEEKTABLES = 0x00080000; static const uint32_t FLAGS_MASK = 0x000F0000; uint32_t dwFlags; // Bank flags uint32_t dwEntryCount; // Number of entries in the bank char szBankName[BANKNAME_LENGTH]; // Bank friendly name uint32_t dwEntryMetaDataElementSize; // Size of each entry meta-data element, in bytes uint32_t dwEntryNameElementSize; // Size of each entry name element, in bytes uint32_t dwAlignment; // Entry alignment, in bytes MINIWAVEFORMAT CompactFormat; // Format data for compact bank FILETIME BuildTime; // Build timestamp void BigEndian() { dwFlags = _byteswap_ulong( dwFlags ); dwEntryCount = _byteswap_ulong( dwEntryCount ); dwEntryMetaDataElementSize = _byteswap_ulong( dwEntryMetaDataElementSize ); dwEntryNameElementSize = _byteswap_ulong( dwEntryNameElementSize ); dwAlignment = _byteswap_ulong( dwAlignment ); CompactFormat.BigEndian(); BuildTime.dwLowDateTime = _byteswap_ulong( BuildTime.dwLowDateTime ); BuildTime.dwHighDateTime = _byteswap_ulong( BuildTime.dwHighDateTime ); } }; struct ENTRY { static const uint32_t FLAGS_READAHEAD = 0x00000001; // Enable stream read-ahead static const uint32_t FLAGS_LOOPCACHE = 0x00000002; // One or more looping sounds use this wave static const uint32_t FLAGS_REMOVELOOPTAIL = 0x00000004;// Remove data after the end of the loop region static const uint32_t FLAGS_IGNORELOOP = 0x00000008; // Used internally when the loop region can't be used static const uint32_t FLAGS_MASK = 0x00000008; union { struct { // Entry flags uint32_t dwFlags : 4; // Duration of the wave, in units of one sample. // For instance, a ten second long wave sampled // at 48KHz would have a duration of 480,000. // This value is not affected by the number of // channels, the number of bits per sample, or the // compression format of the wave. uint32_t Duration : 28; }; uint32_t dwFlagsAndDuration; }; MINIWAVEFORMAT Format; // Entry format. REGION PlayRegion; // Region within the wave data segment that contains this entry. SAMPLEREGION LoopRegion; // Region within the wave data (in samples) that should loop. void BigEndian() { dwFlagsAndDuration = _byteswap_ulong( dwFlagsAndDuration ); Format.BigEndian(); PlayRegion.BigEndian(); LoopRegion.BigEndian(); } }; struct ENTRYCOMPACT { uint32_t dwOffset : 21; // Data offset, in multiplies of the bank alignment uint32_t dwLengthDeviation : 11; // Data length deviation, in bytes void BigEndian() { *reinterpret_cast( this ) = _byteswap_ulong( *reinterpret_cast( this ) ); } void ComputeLocations( DWORD& offset, DWORD& length, uint32_t index, const HEADER& header, const BANKDATA& data, const ENTRYCOMPACT* entries ) const { offset = dwOffset * data.dwAlignment; if ( index < ( data.dwEntryCount - 1 ) ) { length = ( entries[index + 1].dwOffset * data.dwAlignment ) - offset - dwLengthDeviation; } else { length = header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength - offset - dwLengthDeviation; } } static uint32_t GetDuration( DWORD length, const BANKDATA& data, const uint32_t* seekTable ) { switch( data.CompactFormat.wFormatTag ) { case MINIWAVEFORMAT::TAG_ADPCM: { uint32_t duration = ( length / data.CompactFormat.BlockAlign() ) * data.CompactFormat.AdpcmSamplesPerBlock(); uint32_t partial = length % data.CompactFormat.BlockAlign(); if ( partial ) { if ( partial >= ( 7 * data.CompactFormat.nChannels ) ) duration += ( partial * 2 / data.CompactFormat.nChannels - 12 ); } return duration; } case MINIWAVEFORMAT::TAG_WMA: if ( seekTable ) { uint32_t seekCount = *seekTable; if ( seekCount > 0 ) { return seekTable[ seekCount ] / uint32_t( 2 * data.CompactFormat.nChannels ); } } return 0; case MINIWAVEFORMAT::TAG_XMA: if ( seekTable ) { uint32_t seekCount = *seekTable; if ( seekCount > 0 ) { return seekTable[ seekCount ]; } } return 0; default: return uint32_t( ( uint64_t( length ) * 8 ) / uint64_t( data.CompactFormat.BitsPerSample() * data.CompactFormat.nChannels ) ); } } }; #pragma pack(pop) inline const uint32_t* FindSeekTable( uint32_t index, const uint8_t* seekTable, const HEADER& header, const BANKDATA& data ) { if ( !seekTable || index >= data.dwEntryCount ) return nullptr; uint32_t seekSize = header.Segments[HEADER::SEGIDX_SEEKTABLES].dwLength; if ( ( index * sizeof(uint32_t) ) > seekSize ) return nullptr; auto table = reinterpret_cast( seekTable ); uint32_t offset = table[ index ]; if ( offset == uint32_t(-1) ) return nullptr; offset += sizeof(uint32_t) * data.dwEntryCount; if ( offset > seekSize ) return nullptr; return reinterpret_cast( seekTable + offset ); } }; static_assert( sizeof(REGION)==8, "Mismatch with xact3wb.h" ); static_assert( sizeof(SAMPLEREGION)==8, "Mismatch with xact3wb.h" ); static_assert( sizeof(HEADER)==52, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRY)==24, "Mismatch with xact3wb.h" ); static_assert( sizeof(MINIWAVEFORMAT)==4, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRY)==24, "Mismatch with xact3wb.h" ); static_assert( sizeof(ENTRYCOMPACT)==4, "Mismatch with xact3wb.h" ); static_assert( sizeof(BANKDATA)==96, "Mismatch with xact3wb.h" ); using namespace DirectX; //-------------------------------------------------------------------------------------- class WaveBankReader::Impl { public: Impl() : m_async( INVALID_HANDLE_VALUE ), m_prepared(false) #if defined(_XBOX_ONE) && defined(_TITLE) , m_xmaMemory(nullptr) #endif { memset( &m_header, 0, sizeof(HEADER) ); memset( &m_data, 0, sizeof(BANKDATA) ); memset( &m_request, 0, sizeof(OVERLAPPED) ); } ~Impl() { Close(); } HRESULT Open( _In_z_ const wchar_t* szFileName ); void Close(); HRESULT GetFormat( _In_ uint32_t index, _Out_writes_bytes_(maxsize) WAVEFORMATEX* pFormat, _In_ size_t maxsize ) const; HRESULT GetWaveData( _In_ uint32_t index, _Outptr_ const uint8_t** pData, _Out_ uint32_t& dataSize ) const; HRESULT GetSeekTable( _In_ uint32_t index, _Out_ const uint32_t** pData, _Out_ uint32_t& dataCount, _Out_ uint32_t& tag ) const; HRESULT GetMetadata( _In_ uint32_t index, _Out_ Metadata& metadata ) const; bool UpdatePrepared(); void Clear() { memset( &m_header, 0, sizeof(HEADER) ); memset( &m_data, 0, sizeof(BANKDATA ) ); m_names.clear(); m_entries.reset(); m_seekData.reset(); m_waveData.reset(); #if defined(_XBOX_ONE) && defined(_TITLE) if ( m_xmaMemory ) { ApuFree( m_xmaMemory ); m_xmaMemory = nullptr; } #endif } HANDLE m_async; ScopedHandle m_event; OVERLAPPED m_request; bool m_prepared; HEADER m_header; BANKDATA m_data; std::map m_names; private: std::unique_ptr m_entries; std::unique_ptr m_seekData; std::unique_ptr m_waveData; #if defined(_XBOX_ONE) && defined(_TITLE) public: void* m_xmaMemory; #endif }; _Use_decl_annotations_ HRESULT WaveBankReader::Impl::Open( const wchar_t* szFileName ) { Close(); Clear(); m_prepared = false; #if (_WIN32_WINNT >= _WIN32_WINNT_VISTA) m_event.reset( CreateEventEx( nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, EVENT_MODIFY_STATE | SYNCHRONIZE ) ); #else m_event.reset( CreateEvent( nullptr, TRUE, FALSE, nullptr ) ); #endif if ( !m_event ) { return HRESULT_FROM_WIN32( GetLastError() ); } #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) CREATEFILE2_EXTENDED_PARAMETERS params = { sizeof(CREATEFILE2_EXTENDED_PARAMETERS), 0 }; params.dwFileAttributes = FILE_ATTRIBUTE_NORMAL; params.dwFileFlags = FILE_FLAG_OVERLAPPED | FILE_FLAG_SEQUENTIAL_SCAN; ScopedHandle hFile( safe_handle( CreateFile2( szFileName, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING, ¶ms ) ) ); #else ScopedHandle hFile( safe_handle( CreateFileW( szFileName, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_OVERLAPPED | FILE_FLAG_SEQUENTIAL_SCAN, nullptr ) ) ); #endif if ( !hFile ) { return HRESULT_FROM_WIN32( GetLastError() ); } // Read and verify header OVERLAPPED request; memset( &request, 0, sizeof(request) ); request.hEvent = m_event.get(); bool wait = false; if( !ReadFile( hFile.get(), &m_header, sizeof( m_header ), nullptr, &request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); wait = true; } DWORD bytes; #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) BOOL result = GetOverlappedResultEx( hFile.get(), &request, &bytes, INFINITE, FALSE ); #else if ( wait ) (void)WaitForSingleObject( m_event.get(), INFINITE ); BOOL result = GetOverlappedResult( hFile.get(), &request, &bytes, FALSE ); #endif if ( !result || ( bytes != sizeof( m_header ) ) ) { return HRESULT_FROM_WIN32( GetLastError() ); } if ( m_header.dwSignature != HEADER::SIGNATURE && m_header.dwSignature != HEADER::BE_SIGNATURE ) { return E_FAIL; } bool be = ( m_header.dwSignature == HEADER::BE_SIGNATURE ); if ( be ) { DebugTrace( "INFO: \"%ls\" is a big-endian (Xbox 360) wave bank\n", szFileName ); m_header.BigEndian(); } if ( m_header.dwHeaderVersion != HEADER::VERSION ) { return E_FAIL; } // Load bank data memset( &request, 0, sizeof(request) ); request.Offset = m_header.Segments[HEADER::SEGIDX_BANKDATA].dwOffset; request.hEvent = m_event.get(); wait = false; if( !ReadFile( hFile.get(), &m_data, sizeof( m_data ), nullptr, &request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); wait = true; } #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) result = GetOverlappedResultEx( hFile.get(), &request, &bytes, INFINITE, FALSE ); #else if ( wait ) (void)WaitForSingleObject( m_event.get(), INFINITE ); result = GetOverlappedResult( hFile.get(), &request, &bytes, FALSE ); #endif if ( !result || ( bytes != sizeof( m_data ) ) ) { return HRESULT_FROM_WIN32( GetLastError() ); } if ( be ) m_data.BigEndian(); if ( !m_data.dwEntryCount ) { return HRESULT_FROM_WIN32( ERROR_NO_DATA ); } if ( m_data.dwFlags & BANKDATA::TYPE_STREAMING ) { if ( m_data.dwAlignment < ALIGNMENT_DVD ) return E_FAIL; if ( m_data.dwAlignment % DVD_SECTOR_SIZE ) return E_FAIL; } else if ( m_data.dwAlignment < ALIGNMENT_MIN ) { return E_FAIL; } if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { if ( m_data.dwEntryMetaDataElementSize != sizeof(ENTRYCOMPACT) ) { return E_FAIL; } if ( m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength > ( MAX_COMPACT_DATA_SEGMENT_SIZE * m_data.dwAlignment ) ) { // Data segment is too large to be valid compact wavebank return E_FAIL; } } else { if ( m_data.dwEntryMetaDataElementSize != sizeof(ENTRY) ) { return E_FAIL; } } DWORD metadataBytes = m_header.Segments[HEADER::SEGIDX_ENTRYMETADATA].dwLength; if ( metadataBytes != ( m_data.dwEntryCount * m_data.dwEntryMetaDataElementSize ) ) { return E_FAIL; } // Load names DWORD namesBytes = m_header.Segments[HEADER::SEGIDX_ENTRYNAMES].dwLength; if ( namesBytes > 0 ) { if ( namesBytes >= ( m_data.dwEntryNameElementSize * m_data.dwEntryCount ) ) { std::unique_ptr temp( new (std::nothrow) char[ namesBytes ] ); if ( !temp ) return E_OUTOFMEMORY; memset( &request, 0, sizeof(request) ); request.Offset = m_header.Segments[HEADER::SEGIDX_ENTRYNAMES].dwOffset; request.hEvent = m_event.get(); wait = false; if ( !ReadFile( hFile.get(), temp.get(), namesBytes, nullptr, &request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); wait = true; } #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) result = GetOverlappedResultEx( hFile.get(), &request, &bytes, INFINITE, FALSE ); #else if ( wait ) (void)WaitForSingleObject( m_event.get(), INFINITE ); result = GetOverlappedResult( hFile.get(), &request, &bytes, FALSE ); #endif if ( !result || ( namesBytes != bytes ) ) { return HRESULT_FROM_WIN32( GetLastError() ); } for( uint32_t j = 0; j < m_data.dwEntryCount; ++j ) { DWORD n = m_data.dwEntryNameElementSize * j; char name[ 64 ] = {0}; strncpy_s( name, &temp[ n ], 64 ); m_names[ name ] = j; } } } // Load entries if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { m_entries.reset( reinterpret_cast( new (std::nothrow) ENTRYCOMPACT[ m_data.dwEntryCount ] ) ); } else { m_entries.reset( reinterpret_cast( new (std::nothrow) ENTRY[ m_data.dwEntryCount ] ) ); } if ( !m_entries ) return E_OUTOFMEMORY; memset( &request, 0, sizeof(request) ); request.Offset = m_header.Segments[HEADER::SEGIDX_ENTRYMETADATA].dwOffset; request.hEvent = m_event.get(); wait = false; if ( !ReadFile( hFile.get(), m_entries.get(), metadataBytes, nullptr, &request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); wait = true; } #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) result = GetOverlappedResultEx( hFile.get(), &request, &bytes, INFINITE, FALSE ); #else if ( wait ) (void)WaitForSingleObject( m_event.get(), INFINITE ); result = GetOverlappedResult( hFile.get(), &request, &bytes, FALSE ); #endif if ( !result || ( metadataBytes != bytes ) ) { return HRESULT_FROM_WIN32( GetLastError() ); } if ( be ) { if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { auto ptr = reinterpret_cast( m_entries.get() ); for( size_t j = 0; j < m_data.dwEntryCount; ++j, ++ptr ) ptr->BigEndian(); } else { auto ptr = reinterpret_cast( m_entries.get() ); for( size_t j = 0; j < m_data.dwEntryCount; ++j, ++ptr ) ptr->BigEndian(); } } // Load seek tables (XMA2 / xWMA) DWORD seekLen = m_header.Segments[HEADER::SEGIDX_SEEKTABLES].dwLength; if ( seekLen > 0 ) { m_seekData.reset( new (std::nothrow) uint8_t[ seekLen ] ); if ( !m_seekData ) return E_OUTOFMEMORY; memset( &request, 0, sizeof(OVERLAPPED) ); request.Offset = m_header.Segments[HEADER::SEGIDX_SEEKTABLES].dwOffset; request.hEvent = m_event.get(); wait = false; if ( !ReadFile( hFile.get(), m_seekData.get(), seekLen, nullptr, &request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); wait = true; } #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) result = GetOverlappedResultEx( hFile.get(), &request, &bytes, INFINITE, FALSE ); #else if ( wait ) (void)WaitForSingleObject( m_event.get(), INFINITE ); result = GetOverlappedResult( hFile.get(), &request, &bytes, FALSE ); #endif if ( !result || ( seekLen != bytes ) ) { return HRESULT_FROM_WIN32( GetLastError() ); } if ( be ) { auto ptr = reinterpret_cast( m_seekData.get() ); for( size_t j = 0; j < seekLen; j += 4, ++ptr ) { *ptr = _byteswap_ulong( *ptr ); } } } DWORD waveLen = m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength; if ( !waveLen ) { return HRESULT_FROM_WIN32( ERROR_NO_DATA ); } if ( m_data.dwFlags & BANKDATA::TYPE_STREAMING ) { // If streaming, reopen without buffering hFile.reset(); #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) CREATEFILE2_EXTENDED_PARAMETERS params2 = { sizeof(CREATEFILE2_EXTENDED_PARAMETERS), 0 }; params2.dwFileAttributes = FILE_ATTRIBUTE_NORMAL; params2.dwFileFlags = FILE_FLAG_OVERLAPPED | FILE_FLAG_NO_BUFFERING; m_async = CreateFile2( szFileName, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING, ¶ms2 ); #else m_async = CreateFileW( szFileName, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_OVERLAPPED | FILE_FLAG_NO_BUFFERING, nullptr ); #endif if ( m_async == INVALID_HANDLE_VALUE ) { return HRESULT_FROM_WIN32( GetLastError() ); } m_prepared = true; } else { // If in-memory, kick off read of wave data void *dest; #if defined(_XBOX_ONE) && defined(_TITLE) bool xma = false; if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { if ( m_data.CompactFormat.wFormatTag == MINIWAVEFORMAT::TAG_XMA ) xma = true; } else { for( uint32_t j = 0; j < m_data.dwEntryCount; ++j ) { auto& entry = reinterpret_cast( m_entries.get() )[ j ]; if ( entry.Format.wFormatTag == MINIWAVEFORMAT::TAG_XMA ) { xma = true; break; } } } if ( xma ) { HRESULT hr = ApuAlloc( &m_xmaMemory, nullptr, waveLen, SHAPE_XMA_INPUT_BUFFER_ALIGNMENT ); if ( FAILED(hr) ) { DebugTrace( "ERROR: ApuAlloc failed. Did you allocate a large enough heap with ApuCreateHeap for all your XMA wave data?\n" ); return hr; } dest = m_xmaMemory; } else #endif // _XBOX_ONE && _TITLE { m_waveData.reset( new (std::nothrow) uint8_t[ waveLen ] ); if ( !m_waveData ) return E_OUTOFMEMORY; dest = m_waveData.get(); } memset( &m_request, 0, sizeof(OVERLAPPED) ); m_request.Offset = m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwOffset; m_request.hEvent = m_event.get(); if ( !ReadFile( hFile.get(), dest, waveLen, nullptr, &m_request ) ) { DWORD error = GetLastError(); if ( error != ERROR_IO_PENDING ) return HRESULT_FROM_WIN32( error ); } else { m_prepared = true; memset( &m_request, 0, sizeof(OVERLAPPED) ); } m_async = hFile.release(); } return S_OK; } void WaveBankReader::Impl::Close() { if ( m_async != INVALID_HANDLE_VALUE ) { if ( m_request.hEvent != 0 ) { DWORD bytes; #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) (void)GetOverlappedResultEx( m_async, &m_request, &bytes, INFINITE, FALSE ); #else (void)WaitForSingleObject( m_request.hEvent, INFINITE ); (void)GetOverlappedResult( m_async, &m_request, &bytes, FALSE ); #endif } CloseHandle( m_async ); m_async = INVALID_HANDLE_VALUE; } m_event.reset(); #if defined(_XBOX_ONE) && defined(_TITLE) if ( m_xmaMemory ) { ApuFree( m_xmaMemory ); m_xmaMemory = nullptr; } #endif } _Use_decl_annotations_ HRESULT WaveBankReader::Impl::GetFormat( uint32_t index, WAVEFORMATEX* pFormat, size_t maxsize ) const { if ( !pFormat || !maxsize ) return E_INVALIDARG; if ( index >= m_data.dwEntryCount || !m_entries ) { return E_FAIL; } auto& miniFmt = ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) ? m_data.CompactFormat : ( reinterpret_cast( m_entries.get() )[ index ].Format ); switch( miniFmt.wFormatTag ) { case MINIWAVEFORMAT::TAG_PCM: if ( maxsize < sizeof(PCMWAVEFORMAT) ) return HRESULT_FROM_WIN32( ERROR_MORE_DATA ); pFormat->wFormatTag = WAVE_FORMAT_PCM; if ( maxsize >= sizeof(WAVEFORMATEX) ) { pFormat->cbSize = 0; } break; case MINIWAVEFORMAT::TAG_ADPCM: if ( maxsize < ( sizeof(WAVEFORMATEX) + 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/ ) ) return HRESULT_FROM_WIN32( ERROR_MORE_DATA ); pFormat->wFormatTag = WAVE_FORMAT_ADPCM; pFormat->cbSize = 32 /*MSADPCM_FORMAT_EXTRA_BYTES*/; { auto adpcmFmt = reinterpret_cast(pFormat); adpcmFmt->wSamplesPerBlock = (WORD) miniFmt.AdpcmSamplesPerBlock(); miniFmt.AdpcmFillCoefficientTable( adpcmFmt ); } break; case MINIWAVEFORMAT::TAG_WMA: if ( maxsize < sizeof(WAVEFORMATEX) ) return HRESULT_FROM_WIN32( ERROR_MORE_DATA ); pFormat->wFormatTag = (miniFmt.wBitsPerSample & 0x1) ? WAVE_FORMAT_WMAUDIO3 : WAVE_FORMAT_WMAUDIO2; pFormat->cbSize = 0; break; case MINIWAVEFORMAT::TAG_XMA: // XMA2 is supported by Xbox One #if defined(_XBOX_ONE) && defined(_TITLE) if ( maxsize < sizeof(XMA2WAVEFORMATEX) ) return HRESULT_FROM_WIN32( ERROR_MORE_DATA ); pFormat->wFormatTag = WAVE_FORMAT_XMA2; pFormat->cbSize = sizeof(XMA2WAVEFORMATEX) - sizeof(WAVEFORMATEX); { auto xmaFmt = reinterpret_cast(pFormat); xmaFmt->NumStreams = static_cast( (miniFmt.nChannels + 1) / 2 ); xmaFmt->BytesPerBlock = 65536 /* XACT_FIXED_XMA_BLOCK_SIZE */; xmaFmt->EncoderVersion = 4 /* XMAENCODER_VERSION_XMA2 */; auto seekTable = FindSeekTable( index, m_seekData.get(), m_header, m_data ); if ( seekTable ) { xmaFmt->BlockCount = static_cast( *seekTable ); } else { xmaFmt->BlockCount = 0; } switch( miniFmt.nChannels ) { case 1: xmaFmt->ChannelMask = SPEAKER_MONO; break; case 2: xmaFmt->ChannelMask = SPEAKER_STEREO; break; case 3: xmaFmt->ChannelMask = SPEAKER_2POINT1; break; case 4: xmaFmt->ChannelMask = SPEAKER_QUAD; break; case 5: xmaFmt->ChannelMask = SPEAKER_4POINT1; break; case 6: xmaFmt->ChannelMask = SPEAKER_5POINT1; break; case 7: xmaFmt->ChannelMask = SPEAKER_5POINT1 | SPEAKER_BACK_CENTER; break; case 8: xmaFmt->ChannelMask = SPEAKER_7POINT1; break; default: xmaFmt->ChannelMask = DWORD(-1); break; } if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; DWORD dwOffset, dwLength; entry.ComputeLocations( dwOffset, dwLength, index, m_header, m_data, reinterpret_cast( m_entries.get() ) ); xmaFmt->SamplesEncoded = entry.GetDuration( dwLength, m_data, seekTable ); xmaFmt->PlayBegin = xmaFmt->PlayLength = xmaFmt->LoopBegin = xmaFmt->LoopLength = xmaFmt->LoopCount = 0; } else { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; xmaFmt->SamplesEncoded = entry.Duration; xmaFmt->PlayBegin = 0; xmaFmt->PlayLength = entry.PlayRegion.dwLength; if ( entry.LoopRegion.dwTotalSamples > 0 ) { xmaFmt->LoopBegin = entry.LoopRegion.dwStartSample; xmaFmt->LoopLength = entry.LoopRegion.dwTotalSamples; xmaFmt->LoopCount = 0xff /* XACTLOOPCOUNT_INFINITE */; } else { xmaFmt->LoopBegin = xmaFmt->LoopLength = xmaFmt->LoopCount = 0; } } } break; #else return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED ); #endif default: return E_FAIL; } pFormat->nChannels = miniFmt.nChannels; pFormat->wBitsPerSample = miniFmt.BitsPerSample(); pFormat->nBlockAlign = (WORD) miniFmt.BlockAlign(); pFormat->nSamplesPerSec = miniFmt.nSamplesPerSec; pFormat->nAvgBytesPerSec = miniFmt.AvgBytesPerSec(); return S_OK; } _Use_decl_annotations_ HRESULT WaveBankReader::Impl::GetWaveData( uint32_t index, const uint8_t** pData, uint32_t& dataSize ) const { if ( !pData ) return E_INVALIDARG; if ( index >= m_data.dwEntryCount || !m_entries ) { return E_FAIL; } #if defined(_XBOX_ONE) && defined(_TITLE) const uint8_t* waveData = ( m_xmaMemory ) ? reinterpret_cast( m_xmaMemory ) : m_waveData.get(); #else const uint8_t* waveData = m_waveData.get(); #endif { } if ( !waveData ) return E_FAIL; if ( m_data.dwFlags & BANKDATA::TYPE_STREAMING ) { return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED ); } if ( !m_prepared ) { return HRESULT_FROM_WIN32( ERROR_IO_INCOMPLETE ); } if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; DWORD dwOffset, dwLength; entry.ComputeLocations( dwOffset, dwLength, index, m_header, m_data, reinterpret_cast( m_entries.get() ) ); if ( ( dwOffset + dwLength ) > m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength ) { return HRESULT_FROM_WIN32( ERROR_HANDLE_EOF ); } *pData = &waveData[ dwOffset ]; dataSize = dwLength; } else { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; if ( ( entry.PlayRegion.dwOffset + entry.PlayRegion.dwLength ) > m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength ) { return HRESULT_FROM_WIN32( ERROR_HANDLE_EOF ); } *pData = &waveData[ entry.PlayRegion.dwOffset ]; dataSize = entry.PlayRegion.dwLength; } return S_OK; } _Use_decl_annotations_ HRESULT WaveBankReader::Impl::GetSeekTable( uint32_t index, const uint32_t** pData, uint32_t& dataCount, uint32_t& tag ) const { if ( !pData ) return E_INVALIDARG; *pData = nullptr; dataCount = 0; tag = 0; if ( index >= m_data.dwEntryCount || !m_entries ) { return E_FAIL; } if ( !m_seekData ) return S_OK; auto& miniFmt = ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) ? m_data.CompactFormat : ( reinterpret_cast( m_entries.get() )[ index ].Format ); switch( miniFmt.wFormatTag ) { case MINIWAVEFORMAT::TAG_WMA: tag = (miniFmt.wBitsPerSample & 0x1) ? WAVE_FORMAT_WMAUDIO3 : WAVE_FORMAT_WMAUDIO2; break; case MINIWAVEFORMAT::TAG_XMA: tag = 0x166 /* WAVE_FORMAT_XMA2 */; break; default: return S_OK; } auto seekTable = FindSeekTable( index, m_seekData.get(), m_header, m_data ); if ( !seekTable ) return S_OK; dataCount = *seekTable; *pData = seekTable + 1; return S_OK; } _Use_decl_annotations_ HRESULT WaveBankReader::Impl::GetMetadata( uint32_t index, Metadata& metadata ) const { if ( index >= m_data.dwEntryCount || !m_entries ) { return E_FAIL; } if ( m_data.dwFlags & BANKDATA::FLAGS_COMPACT ) { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; DWORD dwOffset, dwLength; entry.ComputeLocations( dwOffset, dwLength, index, m_header, m_data, reinterpret_cast( m_entries.get() ) ); auto seekTable = FindSeekTable( index, m_seekData.get(), m_header, m_data ); metadata.duration = entry.GetDuration( dwLength, m_data, seekTable ); metadata.loopStart = metadata.loopLength = 0; metadata.offsetBytes = dwOffset; metadata.lengthBytes = dwLength; } else { auto& entry = reinterpret_cast( m_entries.get() )[ index ]; metadata.duration = entry.Duration; metadata.loopStart = entry.LoopRegion.dwStartSample; metadata.loopLength = entry.LoopRegion.dwTotalSamples; metadata.offsetBytes = entry.PlayRegion.dwOffset; metadata.lengthBytes = entry.PlayRegion.dwLength; } return S_OK; } bool WaveBankReader::Impl::UpdatePrepared() { if ( m_prepared ) return true; if ( m_async == INVALID_HANDLE_VALUE ) return false; if ( m_request.hEvent != 0 ) { #if (_WIN32_WINNT >= _WIN32_WINNT_WIN8) DWORD bytes; BOOL result = GetOverlappedResultEx( m_async, &m_request, &bytes, 0, FALSE ); #else bool result = HasOverlappedIoCompleted( &m_request ); #endif if ( result ) { m_prepared = true; memset( &m_request, 0, sizeof(OVERLAPPED) ); } } return m_prepared; } //-------------------------------------------------------------------------------------- WaveBankReader::WaveBankReader() : pImpl( new Impl ) { } WaveBankReader::~WaveBankReader() { } _Use_decl_annotations_ HRESULT WaveBankReader::Open( const wchar_t* szFileName ) { return pImpl->Open( szFileName ); } _Use_decl_annotations_ uint32_t WaveBankReader::Find( const char* name ) const { auto it = pImpl->m_names.find( name ); if ( it != pImpl->m_names.cend() ) { return it->second; } return uint32_t(-1); } bool WaveBankReader::IsPrepared() { if ( pImpl->m_prepared ) return true; return pImpl->UpdatePrepared(); } void WaveBankReader::WaitOnPrepare() { if ( pImpl->m_prepared ) return; if ( pImpl->m_request.hEvent != 0 ) { WaitForSingleObjectEx( pImpl->m_request.hEvent, INFINITE, FALSE ); pImpl->UpdatePrepared(); } } bool WaveBankReader::HasNames() const { return !pImpl->m_names.empty(); } bool WaveBankReader::IsStreamingBank() const { return (pImpl->m_data.dwFlags & BANKDATA::TYPE_STREAMING) != 0; } #if defined(_XBOX_ONE) && defined(_TITLE) bool WaveBankReader::HasXMA() const { return (pImpl->m_xmaMemory != 0); } #endif const char* WaveBankReader::BankName() const { return pImpl->m_data.szBankName; } uint32_t WaveBankReader::Count() const { return pImpl->m_data.dwEntryCount; } uint32_t WaveBankReader::BankAudioSize() const { return pImpl->m_header.Segments[HEADER::SEGIDX_ENTRYWAVEDATA].dwLength; } _Use_decl_annotations_ HRESULT WaveBankReader::GetFormat( uint32_t index, WAVEFORMATEX* pFormat, size_t maxsize ) const { return pImpl->GetFormat( index, pFormat, maxsize ); } _Use_decl_annotations_ HRESULT WaveBankReader::GetWaveData( uint32_t index, const uint8_t** pData, uint32_t& dataSize ) const { return pImpl->GetWaveData( index, pData, dataSize ); } _Use_decl_annotations_ HRESULT WaveBankReader::GetSeekTable( uint32_t index, const uint32_t** pData, uint32_t& dataCount, uint32_t& tag ) const { return pImpl->GetSeekTable( index, pData, dataCount, tag ); } _Use_decl_annotations_ HRESULT WaveBankReader::GetMetadata( uint32_t index, Metadata& metadata ) const { return pImpl->GetMetadata( index, metadata ); } HANDLE WaveBankReader::GetAsyncHandle() const { return ( pImpl->m_data.dwFlags & BANKDATA::TYPE_STREAMING ) ? pImpl->m_async : INVALID_HANDLE_VALUE; }