lowpoly-walking-simulator/directx11_hellovr/dxHelloworld1/Vectors.h

531 lines
17 KiB
C
Raw Normal View History

2024-11-14 11:54:38 +00:00
///////////////////////////////////////////////////////////////////////////////
// Vectors.h
// =========
// 2D/3D/4D vectors
//
// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2007-02-14
// UPDATED: 2013-01-20
//
// Copyright (C) 2007-2013 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#ifndef VECTORS_H_DEF
#define VECTORS_H_DEF
#include <cmath>
#include <iostream>
///////////////////////////////////////////////////////////////////////////////
// 2D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector2
{
float x;
float y;
// ctors
Vector2() : x(0), y(0) {};
Vector2(float x, float y) : x(x), y(y) {};
// utils functions
void set(float x, float y);
float length() const; //
float distance(const Vector2& vec) const; // distance between two vectors
Vector2& normalize(); //
float dot(const Vector2& vec) const; // dot product
bool equal(const Vector2& vec, float e) const; // compare with epsilon
// operators
Vector2 operator-() const; // unary operator (negate)
Vector2 operator+(const Vector2& rhs) const; // add rhs
Vector2 operator-(const Vector2& rhs) const; // subtract rhs
Vector2& operator+=(const Vector2& rhs); // add rhs and update this object
Vector2& operator-=(const Vector2& rhs); // subtract rhs and update this object
Vector2 operator*(const float scale) const; // scale
Vector2 operator*(const Vector2& rhs) const; // multiply each element
Vector2& operator*=(const float scale); // scale and update this object
Vector2& operator*=(const Vector2& rhs); // multiply each element and update this object
Vector2 operator/(const float scale) const; // inverse scale
Vector2& operator/=(const float scale); // scale and update this object
bool operator==(const Vector2& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector2& rhs) const; // exact compare, no epsilon
bool operator<(const Vector2& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector2 operator*(const float a, const Vector2 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector2& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 3D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector3
{
float x;
float y;
float z;
// ctors
Vector3() : x(0), y(0), z(0) {};
Vector3(float x, float y, float z) : x(x), y(y), z(z) {};
// utils functions
void set(float x, float y, float z);
float length() const; //
float distance(const Vector3& vec) const; // distance between two vectors
Vector3& normalize(); //
float dot(const Vector3& vec) const; // dot product
Vector3 cross(const Vector3& vec) const; // cross product
bool equal(const Vector3& vec, float e) const; // compare with epsilon
// operators
Vector3 operator-() const; // unary operator (negate)
Vector3 operator+(const Vector3& rhs) const; // add rhs
Vector3 operator-(const Vector3& rhs) const; // subtract rhs
Vector3& operator+=(const Vector3& rhs); // add rhs and update this object
Vector3& operator-=(const Vector3& rhs); // subtract rhs and update this object
Vector3 operator*(const float scale) const; // scale
Vector3 operator*(const Vector3& rhs) const; // multiplay each element
Vector3& operator*=(const float scale); // scale and update this object
Vector3& operator*=(const Vector3& rhs); // product each element and update this object
Vector3 operator/(const float scale) const; // inverse scale
Vector3& operator/=(const float scale); // scale and update this object
bool operator==(const Vector3& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector3& rhs) const; // exact compare, no epsilon
bool operator<(const Vector3& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector3 operator*(const float a, const Vector3 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector3& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 4D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector4
{
float x;
float y;
float z;
float w;
// ctors
Vector4() : x(0), y(0), z(0), w(0) {};
Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {};
// utils functions
void set(float x, float y, float z, float w);
float length() const; //
float distance(const Vector4& vec) const; // distance between two vectors
Vector4& normalize(); //
float dot(const Vector4& vec) const; // dot product
bool equal(const Vector4& vec, float e) const; // compare with epsilon
// operators
Vector4 operator-() const; // unary operator (negate)
Vector4 operator+(const Vector4& rhs) const; // add rhs
Vector4 operator-(const Vector4& rhs) const; // subtract rhs
Vector4& operator+=(const Vector4& rhs); // add rhs and update this object
Vector4& operator-=(const Vector4& rhs); // subtract rhs and update this object
Vector4 operator*(const float scale) const; // scale
Vector4 operator*(const Vector4& rhs) const; // multiply each element
Vector4& operator*=(const float scale); // scale and update this object
Vector4& operator*=(const Vector4& rhs); // multiply each element and update this object
Vector4 operator/(const float scale) const; // inverse scale
Vector4& operator/=(const float scale); // scale and update this object
bool operator==(const Vector4& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector4& rhs) const; // exact compare, no epsilon
bool operator<(const Vector4& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector4 operator*(const float a, const Vector4 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector4& vec);
};
// fast math routines from Doom3 SDK
inline float invSqrt(float x)
{
float xhalf = 0.5f * x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i>>1); // gives initial guess
x = *(float*)&i; // convert bits back to float
x = x * (1.5f - xhalf*x*x); // Newton step
return x;
}
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector2
///////////////////////////////////////////////////////////////////////////////
inline Vector2 Vector2::operator-() const {
return Vector2(-x, -y);
}
inline Vector2 Vector2::operator+(const Vector2& rhs) const {
return Vector2(x+rhs.x, y+rhs.y);
}
inline Vector2 Vector2::operator-(const Vector2& rhs) const {
return Vector2(x-rhs.x, y-rhs.y);
}
inline Vector2& Vector2::operator+=(const Vector2& rhs) {
x += rhs.x; y += rhs.y; return *this;
}
inline Vector2& Vector2::operator-=(const Vector2& rhs) {
x -= rhs.x; y -= rhs.y; return *this;
}
inline Vector2 Vector2::operator*(const float a) const {
return Vector2(x*a, y*a);
}
inline Vector2 Vector2::operator*(const Vector2& rhs) const {
return Vector2(x*rhs.x, y*rhs.y);
}
inline Vector2& Vector2::operator*=(const float a) {
x *= a; y *= a; return *this;
}
inline Vector2& Vector2::operator*=(const Vector2& rhs) {
x *= rhs.x; y *= rhs.y; return *this;
}
inline Vector2 Vector2::operator/(const float a) const {
return Vector2(x/a, y/a);
}
inline Vector2& Vector2::operator/=(const float a) {
x /= a; y /= a; return *this;
}
inline bool Vector2::operator==(const Vector2& rhs) const {
return (x == rhs.x) && (y == rhs.y);
}
inline bool Vector2::operator!=(const Vector2& rhs) const {
return (x != rhs.x) || (y != rhs.y);
}
inline bool Vector2::operator<(const Vector2& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
return false;
}
inline float Vector2::operator[](int index) const {
return (&x)[index];
}
inline float& Vector2::operator[](int index) {
return (&x)[index];
}
inline void Vector2::set(float x, float y) {
this->x = x; this->y = y;
}
inline float Vector2::length() const {
return sqrtf(x*x + y*y);
}
inline float Vector2::distance(const Vector2& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y));
}
inline Vector2& Vector2::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyy = x*x + y*y;
//@@if(xxyy < EPSILON)
//@@ return *this;
//float invLength = invSqrt(xxyy);
float invLength = 1.0f / sqrtf(xxyy);
x *= invLength;
y *= invLength;
return *this;
}
inline float Vector2::dot(const Vector2& rhs) const {
return (x*rhs.x + y*rhs.y);
}
inline bool Vector2::equal(const Vector2& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon;
}
inline Vector2 operator*(const float a, const Vector2 vec) {
return Vector2(a*vec.x, a*vec.y);
}
inline std::ostream& operator<<(std::ostream& os, const Vector2& vec) {
os << "(" << vec.x << ", " << vec.y << ")";
return os;
}
// END OF VECTOR2 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector3
///////////////////////////////////////////////////////////////////////////////
inline Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
inline Vector3 Vector3::operator+(const Vector3& rhs) const {
return Vector3(x+rhs.x, y+rhs.y, z+rhs.z);
}
inline Vector3 Vector3::operator-(const Vector3& rhs) const {
return Vector3(x-rhs.x, y-rhs.y, z-rhs.z);
}
inline Vector3& Vector3::operator+=(const Vector3& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; return *this;
}
inline Vector3& Vector3::operator-=(const Vector3& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this;
}
inline Vector3 Vector3::operator*(const float a) const {
return Vector3(x*a, y*a, z*a);
}
inline Vector3 Vector3::operator*(const Vector3& rhs) const {
return Vector3(x*rhs.x, y*rhs.y, z*rhs.z);
}
inline Vector3& Vector3::operator*=(const float a) {
x *= a; y *= a; z *= a; return *this;
}
inline Vector3& Vector3::operator*=(const Vector3& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this;
}
inline Vector3 Vector3::operator/(const float a) const {
return Vector3(x/a, y/a, z/a);
}
inline Vector3& Vector3::operator/=(const float a) {
x /= a; y /= a; z /= a; return *this;
}
inline bool Vector3::operator==(const Vector3& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
}
inline bool Vector3::operator!=(const Vector3& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z);
}
inline bool Vector3::operator<(const Vector3& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
return false;
}
inline float Vector3::operator[](int index) const {
return (&x)[index];
}
inline float& Vector3::operator[](int index) {
return (&x)[index];
}
inline void Vector3::set(float x, float y, float z) {
this->x = x; this->y = y; this->z = z;
}
inline float Vector3::length() const {
return sqrtf(x*x + y*y + z*z);
}
inline float Vector3::distance(const Vector3& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z));
}
inline Vector3& Vector3::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is ~zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector3::dot(const Vector3& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z);
}
inline Vector3 Vector3::cross(const Vector3& rhs) const {
return Vector3(y*rhs.z - z*rhs.y, z*rhs.x - x*rhs.z, x*rhs.y - y*rhs.x);
}
inline bool Vector3::equal(const Vector3& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && fabs(z - rhs.z) < epsilon;
}
inline Vector3 operator*(const float a, const Vector3 vec) {
return Vector3(a*vec.x, a*vec.y, a*vec.z);
}
inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ")";
return os;
}
// END OF VECTOR3 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector4
///////////////////////////////////////////////////////////////////////////////
inline Vector4 Vector4::operator-() const {
return Vector4(-x, -y, -z, -w);
}
inline Vector4 Vector4::operator+(const Vector4& rhs) const {
return Vector4(x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w);
}
inline Vector4 Vector4::operator-(const Vector4& rhs) const {
return Vector4(x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w);
}
inline Vector4& Vector4::operator+=(const Vector4& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; w += rhs.w; return *this;
}
inline Vector4& Vector4::operator-=(const Vector4& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; w -= rhs.w; return *this;
}
inline Vector4 Vector4::operator*(const float a) const {
return Vector4(x*a, y*a, z*a, w*a);
}
inline Vector4 Vector4::operator*(const Vector4& rhs) const {
return Vector4(x*rhs.x, y*rhs.y, z*rhs.z, w*rhs.w);
}
inline Vector4& Vector4::operator*=(const float a) {
x *= a; y *= a; z *= a; w *= a; return *this;
}
inline Vector4& Vector4::operator*=(const Vector4& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; w *= rhs.w; return *this;
}
inline Vector4 Vector4::operator/(const float a) const {
return Vector4(x/a, y/a, z/a, w/a);
}
inline Vector4& Vector4::operator/=(const float a) {
x /= a; y /= a; z /= a; w /= a; return *this;
}
inline bool Vector4::operator==(const Vector4& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w);
}
inline bool Vector4::operator!=(const Vector4& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w);
}
inline bool Vector4::operator<(const Vector4& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
if(w < rhs.w) return true;
if(w > rhs.w) return false;
return false;
}
inline float Vector4::operator[](int index) const {
return (&x)[index];
}
inline float& Vector4::operator[](int index) {
return (&x)[index];
}
inline void Vector4::set(float x, float y, float z, float w) {
this->x = x; this->y = y; this->z = z; this->w = w;
}
inline float Vector4::length() const {
return sqrtf(x*x + y*y + z*z + w*w);
}
inline float Vector4::distance(const Vector4& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z) + (vec.w-w)*(vec.w-w));
}
inline Vector4& Vector4::normalize() {
//NOTE: leave w-component untouched
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector4::dot(const Vector4& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w);
}
inline bool Vector4::equal(const Vector4& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon &&
fabs(z - rhs.z) < epsilon && fabs(w - rhs.w) < epsilon;
}
inline Vector4 operator*(const float a, const Vector4 vec) {
return Vector4(a*vec.x, a*vec.y, a*vec.z, a*vec.w);
}
inline std::ostream& operator<<(std::ostream& os, const Vector4& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w << ")";
return os;
}
// END OF VECTOR4 /////////////////////////////////////////////////////////////
#endif